首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   3篇
地质学   2篇
海洋学   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudcan performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling—which is based on using nonlinear springs and dampers instead of a continuum soil media—is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudcans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment-rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil-foundation interface.  相似文献   
2.
Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45′ N), where the highest tidal velocities in spring tides were ~?1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.  相似文献   
3.
The network modeling approach is applied to provide a new insight into the onset of non-Darcy flow through porous media. The analytical solutions of one-dimensional Navier-Stokes equation in sinusoidal and conical converging/diverging throats are used to calculate the pressure drop/flow rate responses in the capillaries of the network. The analysis of flow in a single pore revealed that there are two different regions for the flow coefficient ratio as a function of the aspect ratio. It is found that the critical Reynolds number strongly depends on the pore geometrical properties including throat length, average aspect ratio, and average coordination number of the porous media, and an estimation of such properties is required to achieve more reliable predictions. New criteria for the onset of non-Darcy flow are also proposed to overcome the lack of geometrical data. Although the average aspect ratio is the main parameter which controls the inertia effects, the effect of tortuosity on the onset of non-Darcy flow increases when the coordination number of media decreases. In addition, the higher non-Darcy coefficient does not essentially accelerate the onset of inertial flow. The results of this work can help to better understand how the onset of inertial flow may be controlled/changed by the pore architecture of porous media.  相似文献   
4.
Natural Hazards - Spatial information on flood risk and flood-related crop losses is important in flood mitigation and risk management in agricultural watersheds. In this study, loss of water bound...  相似文献   
5.
Computational intelligent techniques, such as fuzzy and genetic algorithm, have proven to be useful in modeling of complex nonlinear phenomena such as dynamic compaction. Dynamic compaction method is used to improve the mechanical behavior of underlying soil layers especially loose granular materials. The method involves the repeated impart of high-energy impacts to the soil surface using steel or concrete tampers with weights ranging 10–40 ton and with drop heights ranging 10–40 m. A relatively exact estimation of dynamic compaction level is of major concern to geotechnical engineers. This paper develops a fuzzy set base method for the analysis of dynamic compaction phenomenon. In this model, the input variables are tamper weight, height of tamper drop, print spacing, tamper radius, number of impact and soil layer geotechnical properties. The main shortcoming of this technique is uncertainty to locate the best sketch of dynamic compaction to gain maximum effect of this method of soil improvement. Therefore, this paper describes the incorporation of genetic algorithm methodology using fuzzy system for determining the optimum design of dynamic compaction. Subsequently, it will be shown that the genetic algorithm has some abilities in the optimization of dynamic compaction design. Also different manners of this algorithm are compared and then the optimized structure of genetic algorithm will be suggested for dynamic compaction.  相似文献   
6.
The Simulator of Artificial RaInfall (SARI) rainfall simulator (RS) is a newly designed, constructed and calibrated, portable, two-nozzle RS with low water consumption, accurate measurement, easy management and low cost. The raindrop size distribution and velocity and mean rainfall intensity were measured. The best rainfall spatial distribution was achieved with nozzles separated by 50, 60 and 70 cm, and with oscillation angles of 30, 45 and 60°, at a pressure of 60 kPa. The uniformity coefficient varied from 57 to 61% and rainfall intensity from 48 to 101 mm h?1. The raindrop diameter varied from 0.2 to 9.9 mm. The raindrop velocity at the optimum pressure of 60 kPa, which was measured with high-speed photography, ranged from 1.1 to 7.1 m s?1. Comparison with other RSs shows that the SARI simulator is a suitable apparatus to research soil erosion and runoff generation under laboratory and field conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号