首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   4篇
地球物理   1篇
地质学   10篇
海洋学   2篇
自然地理   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 171 毫秒
1.
Analyses of DSRV “Alvin” core samples on the Cape Hatteras margin indicate major textural and compositional changes at depths of about 1000 and well below 2500 m. The distribution patterns of petrologic parameters correlate well with water mass flow and suspended-sediment plumes measured on this margin by other workers. Our study also shows: (a) vigorous erosion and sediment transport at depths of less than 400 m resulting from the NE-trending Gulf Stream flow; (b) deposition, largely planktonic-rich sediment released from the Gulf Stream, on the upper- to mid-slope, to depths of about 800–1200 m; (c) winnowing, resuspension and deposition induced by periodically intensified slope currents on the mid-slope to uppermost rise, between about 1000 and 2500 m; and (d) prevailing deposition on the upper rise proper (below 2500 m), from transport by the SW-trending Western Boundary Undercurrent. Sediments moved by bottom currents have altered the composition and distribution patterns of material transported downslope by offshelf spillover; this mixing of gravity-emplaced and bottom-current-transported sediment obscures depositional boundaries. Moreover, reworking of the seafloor by benthic organisms alters physical properties and changes erodability of surficial sediments by bottom currents. Measurement of current flow above the seafloor and direct observation of the bottom are insufficient to delineate surficial sediment boundaries. Detailed petrologic analyses are needed to recognize the long-term signature of processes and define depositional provinces.  相似文献   
2.
Class 1 gas hydrate accumulations are characterized by a permeable hydrate-bearing interval overlying a permeable interval with mobile gas, sandwiched between two impermeable intervals. Depressurization-induced dissociation is currently the favored technology for producing gas from Class 1 gas hydrate accumulations. The depressurization production technology requires heat transfer from the surrounding environment to sustain dissociation as the temperature drops toward the hydrate equilibrium point and leaves the reservoir void of gas hydrate. Production of gas hydrate accumulations by exchanging carbon dioxide with methane in the clathrate structure has been demonstrated in laboratory experiments and proposed as a field-scale technology. The carbon dioxide exchange technology has the potential for yielding higher production rates and mechanically stabilizing the reservoir by maintaining hydrate saturations. We used numerical simulation to investigate the advantages and disadvantages of using carbon dioxide injection to enhance the production of methane from Class 1 gas hydrate accumulations. Numerical simulations in this study were primarily concerned with the mechanisms and approaches of carbon dioxide injection to investigate whether methane production could be enhanced through this approach. To avoid excessive simulation execution times, a five-spot well pattern with a 500-m well spacing was approximated using a two-dimensional domain having well boundaries on the vertical sides and impermeable boundaries on the horizontal sides. Impermeable over- and under burden were included to account for heat transfer into the production interval. Simulation results indicate that low injection pressures can be used to reduce secondary hydrate formation and that direct contact of injected carbon dioxide with the methane hydrate present in the formation is limited due to bypass through the higher permeability gas zone.  相似文献   
3.
Quantifying spatial accessibility in relation to the provision of rural health services has proven difficult. This article critically appraises the two-step floating catchment area (2SFCA) method, a recent solution for measuring primary care service accessibility across rural areas of Victoria, Australia. The 2SFCA method is demonstrated to have two fundamental shortcomings – specifically the use of only one catchment size for all populations, and secondly the assumption that proximity is undifferentiated within a catchment (especially problematic when the catchment is large). Despite its advantages over simple population-to-provider ratios, the 2SFCA method needs to be used with caution.  相似文献   
4.
5.
利用DGY孔沉积物的岩性、粒度及孢粉分析资料,探讨了太湖平原碟形洼地沉积物记录的8000年以来植被演化、气候波动,流域地貌环境的演变及其对海平面波动的响应。孢粉记录表明:本区距今8000~5000年木本植被由以落叶阔叶乔木和针叶乔木为主变为落叶阔叶乔木和常绿阔叶乔木为主,气候由温和略干转为暖热湿润;距今5000~4000年森林退缩,气候温和偏干;距今4000年左右出现低温事件;距今4000~3,000年木本植被以常绿阔叶乔木为主,气候温暖湿润;距今3000年以来木本植被主要为常绿阔叶乔木、落叶阔叶乔木和针叶乔木,气候总体温暖湿润,有波动变凉干趋势。岩性、粒度及孢粉记录综合显示本区距今8000~5000年发育潟湖相泥质粉砂,反映流域环境开放、与海连通;距今5000~4000年发育淡水沼泽,未受海水作用,反映水域缩小、流域环境封闭;距今4000~3000年水域扩大,并出现海水倒灌,反映内低外高的碟形洼地已经形成;距今3000年以来,发育湖沼平原,发生数次海水倒灌,反映碟形洼地地貌的进一步发育。  相似文献   
6.
大别山碧溪岭榴辉岩中有三种含水矿物:多硅白云母、角闪石和黑云母,它们分别是超高压(UHP)阶段(即柯石英榴辉岩相阶段)或者石英榴辉岩相阶段、退变质后成合晶阶段和角闪岩相退变质阶段的产物,本文利用离子探针技术对它们进行了氢同位素和硼同位素的分析。三种矿物内部的同位素组成都是均一的,多硅白云母的δD为-105‰±9‰,δ~(11)B为-25.9‰±2.0‰;角闪石的δD为-100‰±9‰,δ~(11)B为-24.4‰±0.9‰;黑云母的δD为-65‰±4‰,δ~(11)B为-19.3‰±1.3‰。多硅白云母和角闪石的氢-硼同位素组成在误差范围内是相同的,而和黑云母则有明显的差别,这表明,从UHP阶段或者石英榴辉岩相阶段到随后的后成合晶阶段,变质流体是内部缓冲的,而在角闪岩相变质阶段,则有了外来流体的加入,这个流体是相对富集D和~(11)B的。碧溪岭榴辉岩矿物相对于其地壳原岩表现出低δ~(11)B的特征,说明俯冲过程中板块经历了强烈的脱硼。  相似文献   
7.
8.
Determination of aqueous phase diffusion coefficients of solutes through porous media is essential for understanding and modeling contaminant transport. Prediction of diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity and constrictivity factors. No methods are available for the direct measurement of these factors, which are empirical in their definition. In this paper, a new definition for the tortuosity factor is proposed, as the real to ideal interfacial area ratio. We define the tortuosity factor for saturated porous media (tau5) as the ratio S/S(o) (specific surface of real porous medium to that of an idealized capillary bundle). For unsaturated media, tortuosity factor (tau(a)) is defined as a(aw)/a(aw),o (ratio of the specific air-water interfacial area of real and the corresponding idealized porous medium). This tortuosity factor is suitably measured using sorptive tracers (e.g., nitrogen adsorption method) for saturated media and interfacial tracers for unsaturated media. A model based on this new definition of tortuosity factors, termed the interfacial area ratio (IAR) model, is presented for the prediction of diffusion coefficients as a function of the degree of water saturation. Diffusion coefficients and diffusive resistances measured in a number of saturated and unsaturated granular porous media, for solutes in dilute aqueous solutions, agree well with the predictions of the IAR model. A comparison of permeability of saturated sands estimated based on tau(s) and the same based on the Kozeny-Carman equation confirm the usefulness of the tau(s) parameter as a measure of tortuosity.  相似文献   
9.
“缓变型地球化学灾害”是通过长期积累而存在于土壤或沉积物中的包括重金属和有机污染物在内的环境污染物,因环境物理化学条件(例如温度、pH值、湿度、有机质含量等)的改变减小了环境容量,某种或某些形态的污染物大量地被重新活化和突然释放出来并造成严重生态和环境损害的灾害现象。这种灾害具有明显的特征,其定量数学模型可较完整地概括出环境系统从“干净”到“污染”再到“灾害”的整个过程,可以用于灾害的风险概率评估、预测、灾害爆发轨迹等方面的研究,为土壤污染防治和灾害预警提供了定量研究工具和可供实际采用的基本手段,对当前国土资源调查中的“生态环境地球化学评价”具有重要的借鉴意义。  相似文献   
10.
Increasing attention is being focused on the rapid rise of CO2 levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO2 in deep geological formations has been proposed as a long-term solution to help stabilize CO2 levels. However, before such technology can be developed and implemented, a basic understanding of H2O–CO2 systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock–water reactions in mildly acidic, CO2-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25–90 °C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3 ? pH ? 7) with a slope, η, of −0.15 ± 0.01. Activation energy, Ea, has been estimated at 32.0 ± 2.4 kJ mol−1. Dissolution kinetics measurements like these are essential for modeling the rate at which CO2-saturated fluids react with basalt and ultimately drive conversion rates to carbonate minerals in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号