首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   13篇
  国内免费   16篇
测绘学   13篇
大气科学   45篇
地球物理   81篇
地质学   274篇
海洋学   38篇
天文学   28篇
综合类   14篇
自然地理   18篇
  2023年   6篇
  2022年   34篇
  2021年   30篇
  2020年   15篇
  2019年   25篇
  2018年   31篇
  2017年   47篇
  2016年   46篇
  2015年   23篇
  2014年   35篇
  2013年   50篇
  2012年   28篇
  2011年   15篇
  2010年   15篇
  2009年   16篇
  2008年   15篇
  2007年   11篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
排序方式: 共有511条查询结果,搜索用时 46 毫秒
1.
2.
This paper presents a potential based boundary element method for solving a nonlinear free surface flow problem for a ship moving with a uniform speed in finite depth of water. The free surface boundary condition is linearized by the systematic method of perturbation in terms of a small parameter up to third order. The surfaces are discretized into flat quadrilateral elements and the influence coefficients are calculated by Morino's analytical formula. Dawson's upstream finite difference operator is used in order to satisfy the radiation condition. The second order solution gives better result than the first or third order solution. So the present method with the second order solution can be adopted as a powerful tool for the hydrodynamic analysis of the thin ship in finite depth of water.  相似文献   
3.
In this note we derive an exact solution of transfer equation in a plane-parallel semiinfinite atmosphere with albedo >1, by the method of Laplace transform and Wiener-Hopf technique. The emergent intensityI(0, ) is obtained in terms of theH 0-functionH 0() (Das Gupta, 1978) for which some good approximations are given. Intensity at any depth is also obtained.I(0, )/I(0, 0) is plotted in graphs against [0,1], and shows a maximum which drops and shifts towards the origin as increases.  相似文献   
4.
Indiscriminate cutting of hills in the Sylhet region has become a major environmental issue. The nature and life style of Sylhet intimately related with the hills are thus under the threat of a drastic imbalance in its ecosystem. Due to such hill cutting the mostly affected sectors of this region will be its weather and climate, geomorphology and hydrology, and the indigenous flora and fauna. As a result the frequency of natural calamities like earthquake, flash flooding etc may increase considerably. Deforestation and resulting increased soil erosion, decreased ground water recharge and deteriorated water quality might also be as consequences of such hill cutting. This paper investigates the cause and extent of the problem along with its probable impact and finally suggests actions for conservation of hills for ecological balance of the region.  相似文献   
5.
The impact of Southern Oscillation on thecyclogenesis over the Bay of Bengal duringthe summer monsoon has been investigated.The analysis of correlation coefficients(CCs) between the frequency of monsoondepressions and the Southern OscillationIndex (SOI) reveals that more depressionsform during July and August of El Niñoyears. Due to this, the seasonal frequencyof monsoon depressions remains little higherduring El Niño epochs even though thecorrelations for June and September are notsignificant. The CCs for July and August aresignificant at the 99% level.The El Niño-Southern Oscillation (ENSO)is known to affect Indian MonsoonRainfall (IMR) adversely. The enhancedcyclogenesis over the Bay of Bengal duringJuly and August is an impact of ENSO whichneeds to be examined closely. Increasedcyclogenesis over the Bay of Bengal may bereducing the deficiency in IMR duringEl Niño years by producing more rainfallover the eastern parts of India duringJuly and August. Thus there is a considerablespatial variation in the impact of ENSOon the monsoon rainfall over India and El Niñoneed not necessarily imply a monsoonfailure everywhere in India.The area of formation of monsoon depressionsshifts eastward during El Niño years.Warmer sea surface temperature (SST) anomaliesprevail over northwest and adjoiningwestcentral Bay of Bengal during premonsoon andmonsoon seasons of El Niño years.May minus March SOI can provide useful predictionsof monsoon depression frequencyduring July and August.  相似文献   
6.
7.
The present work addresses the long-standing issues on the characterization aspect of the Proterozoic siliciclastic successions exposed in the central part of the Lesser Himalaya, restricted between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT). Geologic, sedimentologic, and petrographic study divides the Lesser Himalaya in two zones- northern Palaeo- Mesoproterozoic Inner Lesser Himalayan (ILH) and southern Neoproterozoic Outer Lesser Himalayan (OLH) zones. The major lithofacies recognized from the zones are - (i) coarse grained siliciclastic (CGS), (ii) interbedded medium and fine-grained siliciclastic (IMFS), (iii) argillite (ARG), and (iv) siliciclastic–argillite rhythmites (SAR). Amongst all these facies, the nearshore IMFS facies shows consistent presence in both OLH and ILH zones. From the facies distribution pattern, a northwest–southeasterly trending palaeo- shoreline has been envisaged. The CGS facies in the ILH hints towards an alluvial fan setting during 1.8 Ga rifting phase associated with penecontemporaneous basic magmatism. Compositionally, the siliciclastics of both the zones (ILH and OLH) are arenite and wacke types with minimal variation in their detrital proportions, derived from the early Proterozoic (between 2.4-1.6Ga) Aravalli-Delhi Supergroup provenance. Nearly matching types and content of detrital modes and the lithofacies pattern of the ILH and OLH siliciclastics probably conclude the derivation from the rising (nearby) Aravalli-Delhi orogen and deposition in a foreland like situation.  相似文献   
8.
In this paper, a two-dimensional, vertically integrated hydrodynamic model is developed taking into account entrained air bubbles during storm surges as well as incorporating inverted barometer, and river and land dynamics. The model is specifically designed for the coastal region of Bangladesh. A nested scheme method with a fine mesh scheme (FMS), capable of incorporating the complex coastline and all major offshore islands accurately, nested into a coarse mesh scheme (CMS) covering up to 15° N latitude in the Bay of Bengal is used. To incorporate the small and big offshore islands in the Meghna estuarine region with its complex coastline accurately, a very fine mesh scheme (VFMS) is again nested into the FMS. Along the northeast corner of the VFMS, the Meghna river discharge is taken into account. The coastal and island boundaries are approximated through proper stair steps. The model equations are solved by a semi-implicit finite difference technique using a staggered C-grid. A stable appropriate tidal condition over the model domain is generated by applying tidal forcing with the four major tidal constituents M 2, S 2, K 1, and O 1 along the southern open boundary of the CMS. This tidal regime is introduced as the initial state of the sea for nonlinear interaction of tide and surge. The model is applied to simulate water levels due to the interaction of tide and surge associated with the cyclones April 1991 and Aila at different coastal and island locations along the coast of Bangladesh. The results are found to be quite satisfactory with root mean square error of ~0.50 m as calculated for both the storm events. Tests of sensitivities on water levels are carried out for air bubbles, offshore islands, river discharge, inverse barometer, and grid resolution. The presence of air bubbles increases simulated water levels a little bit in our model, and the contribution of air bubbles in increasing water level is found around 2 %. Further, water levels are found to be influenced by offshore islands, river discharge, inverse barometer as well as grid resolution.  相似文献   
9.
Abstract

This research deals with the surface dynamics and key factors – hydrological regime, sediment load, and erodibility of floodplain facies – of frequent channel shifting, intensive meandering, and lateral instability of the Bhagirathi River in the western part of the Ganga-Brahmaputra Delta (GBD). At present, the floodplain of the Bhagirathi is categorized as a medium energy (specific stream power of 10–300 W m?2), non-cohesive floodplain, which exhibits a mixed-load and a meandering channel, an entrenchment ratio >2.2, width–depth ratio >12, sinuosity >1.4, and channel slope <0.02. In the study area, since 1975, four meander cutoffs have been shaped at an average rate of one in every 9–10 years. In the active meander belt and sand-silt dominated floodplains of GBD, frequent shifting of the channel and meander migration escalate severe bank erosion (e.g. 2.5 × 106 m3 of land lost between 1999 and 2004) throughout the year. Remote sensing based spatio-temporal analysis and stratigraphic analysis reveal that the impact of the Farakka barrage, completed in 1975, is not the sole factor of downstream channel oscillation; rather, hydrogeomorphic instability induced by the Ajay–Mayurakshi fluvial system and the erodibility of floodplain sediments control the channel dynamics of the study area.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号