首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地球物理   18篇
地质学   4篇
海洋学   5篇
天文学   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有29条查询结果,搜索用时 187 毫秒
1.
Data of neutral meridional wind obtained by the meteor radar at Esrange and data of temperature and pressure measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) spacecraft were studied with respect to a day-to-day atmospheric variability with periods ranging from 1.5 to 5 days. The detailed analysis was carried out for February 2004. Perturbations of the atmospheric parameters at the examined periods appeared mainly as eastward-propagating waves of zonal wavenumbers 1 and 2. We suggested that these waves excited by the jet instability on both flanks of the polar-night jet in the upper stratosphere and mesosphere interact nonlinearly with each other, and this interaction generates secondary waves. The radar observed both primary and secondary waves at mesospheric heights. The data analysis supports this suggestion. Under conditions of weaker instability observed in February 2003 the perturbations of atmospheric parameters of periods ranging from 1.5 to 5 days had smaller amplitudes at heights of the mesosphere than those in February 2004. It was found that the Eliassen-Palm fluxes calculated for the waves generated by the jet instability were mainly downward directed. This result suggests a possible dynamical influence of the mesospheric layers on the lower atmospheric levels.  相似文献   
2.
Model calculations of plasma drifts in the solar corona were performed. We established that only drifts in crossed fields could result in velocities V of several hundred kilometers per second. Such velocities are typical of coronal mass ejections (CMEs). We derived an analytic expression for V where n, the expansion harmonic of the magnetic-field strength, varies with time. As follows from this expression, V is a power function of the distance with index (2?n) and the radial component changes sign (n?1) times in the latitude range from ?π/2 to +π/2. We found that if the magnetic dipole moment varies with time, the similarity between the spiral structures of coronal plasma is preserved when they displace within several solar radii and the density gradient at the conical boundaries increases (the apparent contrast is enhanced). There is a correspondence between the inferred model effects and the actually observed phenomena that accompany CMEs.  相似文献   
3.
The magnetic flux longitudinal distribution in the equatorial solar zone has been studied. The magnetic synoptic maps of the Wilcox Solar Observatory (WSO) during Carrington rotations (CRs) 2052–2068 in 2007 and early 2008 have been analyzed. The longitudinal distributions of the area of the zones where the photospheric magnetic field locally enhanced have been constructed for each CR. The obtained distributions indicate that the zones are located discretely and that a clearly defined one narrow longitudinal interval with the maximum flux is present. The longitudinal position of this maximum shifted discretely by ≈130° at an interval of 5.5 ± 0.5 CRs. A longitudinal shift of the zones with an increased magnetic flux multiple of 60° was observed between the hemispheres. In addition, a time shift of ≈2.5 CRs existed between the instants when the position of maximum fluxes in different hemispheres shifted. The established peculiarities of the magnetic flux longitudinal distribution and time dynamics are interpreted as an action of supergiant convection cells. These actions result in that magnetic fields are removed from the generation region through the channels that are formed between such cells at a longitudinal interval of 120°. The average synodic rotation velocity of the considered equatorial channels, through which the magnetic flux emerges, is 13.43° day–1.  相似文献   
4.
Height-latitude distributions of the prevailing vertical wind for the mesosphere and lower thermosphere (70–110 km) are calculated on the basis of the empirical model of the monthly mean zonal mean prevailing horizontal wind. The presence of cellular structures is the main feature of the obtained vertical and meridional circulations. The ways such structures form and the problems of their modeling in global numerical models of the atmosphere are discussed.  相似文献   
5.
The surface where the radial component of the solar magnetic field changes sign is computed for a minimum corona. It is shown that (1) the projection of the folds of this surface onto the plane of the sky is consistent with the helmet structures observed during the eclipse of June 30, 1954; (2) there are type 1 and type 2 helmets, according to the well-known classification of coronal structures; (3) some elements of this sign-change surface of the radial field can be classified as so-called envelopes. The results obtained suggest that more complex coronal structures can be described in a similar way. An MHD model of polar plumes is considered.  相似文献   
6.
7.
Geomagnetism and Aeronomy - The magnetic evolution of the active region of the Sun at the level of the photosphere has been studied. Magnetic synoptic maps of the 2007 Kitt Peak Observatory were...  相似文献   
8.
The configuration of the solar corona magnetic field has been studied. Data on the position of the K-corona emission polarization plane during the solar eclipses of September 21, 1941; February 25, 1952; and August 1, 2008, were used as an indicator of the magnetic field line orientation. Based on an analysis of these data, a conclusion has been made that the studied configuration has a large-scale organization in the form of a cellular structure with an alternating field reversal. The estimated cell size was 61° ± 6° (or 36° ± 2°) in longitude with a latitudinal extension of 40°?C50° in the range of visible distances 1.3?C2.0 R Sun . A comparison of the detected cellular structure of the coronal magnetic field with synoptic {ie908-1} maps indicated that the structure latitudinal boundaries vary insignificantly within 1.1?C2.0 R Sun . The possible causes of the formation of the magnetic field large-scale cellular configuration in the corona and the conditions for the transformation of this configuration into a two-sector structure are discussed.  相似文献   
9.
Data from meteo radar measurements of the wind in the mesosphere/lower thermosphere region at high latitudes of the Southern Hemisphere (Molodezhnaya station, 68° S, 45° E) and at middle latitudes of the Northern Hemisphere (Obninsk station, 55° N, 37° E) during solar proton events that took place in 1989, 1991, 2000, 2005, and 2012 are analyzed in the paper. In 1989 and 1991, we succeeded in observing the response to solar proton evens at both stations simultaneously. The results show that solar proton events lead to a change in the wind regime of the mesosphere and lower thermosphere. At high latitudes of the Southern Hemisphere, significant changes are observed in the values of the velocities of the meridional and zonal components of the prevailing wind. In the case of powerful solar proton events, the amplitude of the semidiurnal tide grows in the vicinity of the proton flux maximum. The response to these events depends on the season. The reaction of the prevailing wind at middle latitudes shows the same features as the reaction of the wind at high latitudes. However no unambiguous response of the tide amplitude is observed. In the summer season, even powerful events (for example, in July 2000) cause no changes in the wind regime parameters in the midlatitude region of the mesosphere/lower thermosphere.  相似文献   
10.
The stratosphere–mesosphere response to the major sudden stratospheric warming (SSW) in the winter of 2003/2004 has been studied. The UKMO (UK Meteorological Office) data set was used to examine the features of the large-scale thermodynamic anomalies present in the stratosphere of the Northern Hemisphere. The vertical and latitudinal structure of the genuine anomalies, emphasized by removing the UKMO climatology, has been investigated as well. The features of the stratospheric anomalies have been related to the mesospheric ones in measured neutral winds from radars and temperatures from meteor radars (90 km). It was found that the stratospheric warming spread to the lower mesosphere, while cooling occurred in the upper mesosphere, a feature that may be related to the large vertical scales of the stationary planetary waves (SPWs). It was shown also that the beginning of the eastward wind deceleration in the stratosphere–mesosphere system coincided with the maximum amplification of the SPW1 accompanied by short-lived bursts of waves 2 and 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号