首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
地球物理   23篇
地质学   3篇
自然地理   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2014年   2篇
  2011年   7篇
  2010年   2篇
  2008年   1篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
A technique to detect spectrum variations versus time along seismic signals is applied to coda waves of local earthquakes (Friuli, Northern Italy). The technique consists of an autoregressive modeling and utilizes nonlinear spectral analysis where the spectrum of stochastic processes is estimated as the transfer function of the filter that whitens the process under analysis. This approach appears to be particularly well suited to those investigations where automatic measurements of the instantaneous frequency have to be carried out on digital data. The detection of variations of the instantaneous frequency along the coda allows computation of seismic-Q in the lithosphere and its frequency dependence: the result obtained is $$Q = 100f^{0.4} $$ which appears to be strongly consistent with that, based on the estimate of the coda amplitude decay in the band including the most significant frequencies of the signals under analysis.  相似文献   
2.
The method of coda waves was applied to two different sets of data for the evaluation of the relative site response.The first set of data consists of low magnitude earthquakes with closely spaced locations, recorded at a small aperture array of velocimeters located in the Abruzzo region, central Italy. The second set of data is composed of events with epicentral distance ranging from 20 to 300 km, recorded at a seismological network with an aperture of about 100 km located in the Puglia region, southern Italy.Results show that the coda wave method furnishes stable estimates of the site effect. An amplification, relative to an arbitrary site, of a factor of about 2 occurs in the 1.7–6 Hz frequency band for two stations of the Abruzzo network, while an amplification factor of about 0.5 occurs in the whole frequency band (1–24 Hz) for one of the stations of the Puglia network. This station is located in an area which is correlated with a low macroseismic intensity anomaly.  相似文献   
3.
Strong ground motions recorded on the sedimentary deposits of the Po River alluvial plain during the Emilia (Northern Italy) Mw 5.7 earthquake of May 29, 2012 are used to assess the vertical profile of shear-wave velocity above the limestone basement. Data were collected by a linear array installed for site effect studies after the Mw 5.9 mainshock of May 20, 2012. The array stations, equipped with both strong and weak motion sensors, are aligned in the South–North direction, at distances ranging from 1 to 26 km from the epicenter. The vertical components of ground motion show very distinctive, large-amplitude, low-frequency dispersive wave trains. Wavelet analysis yields group-velocity dispersion curve in the 0.2–0.7 Hz frequency band. The availability of a long ambient noise record allows estimates of the site resonance frequency along with its stability among stations. The joint inversion of dispersion of surface waves and ellipticity curves derived from ambient noise H/V allows extending investigations down to the sediment-limestone interface, at a depth of about 5,000 m. Our results add new information about the velocity structure at a scale that is intermediate between the local scale already investigated by other authors with small-aperture arrays using ambient noise and the regional scale inferred from modeling of seismogram waveforms recorded at hundreds of kilometers from the source.  相似文献   
4.
This is the first part of a study on the seismic response of the L’Aquila city using 2D simulation and experimental data. We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0°–90°. Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding synthetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal components have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90°. The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.  相似文献   
5.
The paper focuses on the strong motion array deployed in the upper Aterno River Valley, in the immediate outskirts north-west of the town of L’Aquila, which is part of the Italian Strong Motion Network operated by the Department of Civil Protection. The array is composed of six accelerometric stations located along a cross section of the valley. The importance of this array relies on the fact that a large amount of high-quality records were obtained during the 2009 L’Aquila seismic sequence, from both the mainshock and several aftershocks. These data are especially important to investigate site effects in sediment-filled valleys during moderate earthquakes in epicentral area because well-documented observational studies are very limited in the literature. However, the main drawback for the study of site effects in the Aterno valley is the lack of a detailed knowledge of the geometry of the valley, soil layering and dynamic properties of materials. The main motivation for this study stems from the need to provide a reliable subsoil model of the valley coupled with high-quality strong motion data. Based on the above, in the framework of S4 project, a major effort was undertaken to get a trustworthy cross section of the valley by an ad hoc investigation, comprising geological and geotechnical surveys as well as an extensive geophysical campaign, characterized by both active and passive measurements. These results were complemented by additional geological and geotechnical data available in the literature. By merging all the information acquired, a 2D subsoil model of the transversal section of the upper Aterno valley has been produced. The valley is characterised by an asymmetric shape with a shallower rock basement at the western edge of the valley that deepens at the valley centre. Moreover, based on the results of geophysical tests, representative Vs values were assigned to the different lithologic units forming the alluvial deposits filling the valley. Shear wave velocity is a fundamental parameter for ground response studies and it is also effective in classifying the accelerometric station from a seismic point of view. The 2D model may be therefore, considered a benchmark model for future studies of site effects. It will offer the possibility to examine site effects with a complex underlying geology and to validate the results of numerical simulations of site response analyses with the numerous observations from earthquake recordings, both for weak and strong ground motion conditions.  相似文献   
6.
During the microzonation studies of the April 6th, 2009 L??Aquila earthquake, we observed local seismic amplifications in the Roio area??a plane separated from L??Aquila city center by mount Luco. Six portable, digital instruments were deployed across the plain from 15 April to mid-May 2009. This array recorded 152 aftershocks. We analyzed the ground motion from these events to determine relative site amplification within the plain and on surrounding ridges. Horizontal over vertical spectral ratio on noise data (HVSRN), aftershock recordings (HVEQ) and standard spectral ratio (SSR) showed amplifications at 1.3 and 4.0?Hz on quaternary deposits. Seismic amplifications in the frequency range of 4 and 6?Hz were also observed on a carbonate ridge of Colle di Roio, on the northwestern border of the plateau. A small amplification was noticed near the top of mount Luco, another rocky site. Large discrepancies in the amplification levels between methods have been observed for these sites, but the HVSRN, HVEQ and SSR gave similar results at the stations located in the Roio plain. On the rocky sites, the SSR was more reliable than the HVSRN at estimating the transfer function of the site, even if the resonance frequency seemed to be well detected by the latter method.  相似文献   
7.
Rivers on territory of the Republic of Serbia can be separated to three sea drainage basins: Black, Adriatic and Aegean. Majority of rivers belong to the Black Sea drainage basin. The Danube is the most important river in Serbia and one of the most important rivers of Europe. All rivers investigated in this paper represent direct or indirect tributaries of the Danube River and as that, they are belonging to the Black Sea drainage basin. In this study, the water quality status and the spatial and temporal trends of seven major rivers in Serbia were assessed through the application of ten parameters of Water Quality Index. Ten year (2004–2013) public database of environmental data was used. Into considerations were taken differences between every river individually and difference between sample positions on every single river. Based on the chemical parameters of water quality, it can be seen that the biggest rivers in Serbia show different values of WQ parameters. The highest WQ value is measured on the Drina River, while the lowest value is measured on the Ju?na Morava and the Tisza River. Analyses of parameters per period of year show that there is a statistically significant difference between values during warm and cold periods.  相似文献   
8.
A three-component digital seismic network has been installed along central Apennines since the end of 1991. Two seismic sequences having main shocks of magnitudes 3.9 and 3.7 were recorded in August 1992 and June 1994, respectively. A detailed analysis of these sequences, including multiplet relocation, fault-plane solutions and source parameter estimation, is performed in the present paper. A correlation analysis allowed us to recognize a number of correlated events in the two sequences which were used for relative locations using a master event technique. This analysis allowed to obtain a better alignment of epicentral data along two almost orthogonal directions, following an Apenninic and an anti-Apenninic trend. For the two sequences, fault-plane solutions were evaluated by using a first arrival technique, resulting in mechanisms with predominant normal faulting for the 1992 and 1994 swarms. S-wave polarization analysis allowed to check the stability of the previous solutions and to reduce their range of uncertainty. The same technique was also applied to derive the composite fault-plane solutions from the aftershocks, resulting in solutions which are in good agreement with those derived from the main shocks of both sequences. Source parameters were then derived from the three-component records of 28 well-recorded events with seismic moment in the range 8.5 × 1010–1.0 × 1014 Nm. Stress drops ranged in the interval 0.3–52.3 bar and source radii were of the order of 100 m. Their scaling relations are in good agreement with other results derived from the analysis of other Italian earthquakes that occurred in regions of predominantly normal faulting tectonics (Apennines and Calabrian arc).  相似文献   
9.
A temporary network of 33 seismic stations was deployed in the area struck by the 6th April 2009, Mw 6.1 (Scognamiglio et?al. in Seism Res Lett 6/81, 2010), L??Aquila earthquake (central Italy), with the aim to investigate the site amplification within the Aterno river Valley. The seismograms of 18 earthquakes recorded by 14 of the 33 stations were used to evaluate the average horizontal to vertical spectral ratio (HVSR) for each site and the standard horizontal spectral ratio (SSR) between a site and a reference station. The obtained results have been compared to the geological and geophysical information in order to explain the resonance frequencies and the amplification levels with respect to surface geology of the valley. The results indicate that there is no uniform pattern of amplification, because of the complex geologic setting, as the thickness and degree of cementation of the deposits is highly variable.  相似文献   
10.
Risk assessment and mapping methodologies for heat waves as frequently occurring hazards in central and southeastern Europe were applied in this study, and the impact of heat waves on the mortality of urban populations was determined as part of the assessment. The methodology for conducting the heat wave risk assessment is based on European Commission’s Guidelines for Risk Assessment and Mapping. The Novi Sad (Serbia) urban area was studied during summer 2015, which was one of the hottest summers in the last few decades. In situ air temperature measurements from urban stations and mortality of urban populations were used. Nocturnal urban heat island (UHI) intensity values between the various built-up zones and natural surrounding areas were used for the hazard level calculation. Temperature data from 9 p.m. to 5 a.m. were used because during the night, the UHI intensity reached its maximum values. The average daily number of deaths by LCZs was used to define the impact level of the vulnerability index. Calculations for both hazard levels were completed during two intensive heat waves (in July and August 2015) when it was expected that there may be a high level of risk. The results and maps show that the urban area is complex, and the heat wave risk on the population is not uniform. The most densely built-up areas (LCZs 2, 5 and 6) have very high or high risk values that are influenced by a higher rate of mortality. The obtained results and maps can be used by local authorities to prevent and mitigate climate-related hazards, for medical institutions as well as urban planners and for ancillary local, regional or national services. According to these results, the local authorities could define hot spots where they can place medical and rescue teams and install points with water supplies, etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号