首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   2篇
  2016年   1篇
  2006年   2篇
  2004年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有7条查询结果,搜索用时 437 毫秒
1
1.
It has been suggested that, unless a major effort is made, the atmospheric concentration of carbon dioxide may rise above four times the pre-industrial level in a few centuries. Here we use a coupled atmosphere-ocean-land model to explore the response of the global water cycle to such a large increase in carbon dioxide, focusing on river discharge and soil moisture. Our results suggest that water is going to be more plentiful in those regions of the world that are already `water-rich'. However, water stresses will increase significantly in regions and seasons that are already relatively dry. This could pose a very challenging problem for water-resource management around the world. For soil moisture, our results indicate reductions during much of the year in many semi-arid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. In some of these regions, soil moisture values are reduced by almost a factor of two during the dry season. The drying in semi-arid regions is likely to induce the outward expansion of deserts to the surrounding regions. Over extensive regions of both the Eurasian and North American continents in high and middle latitudes, soil moisture decreases in summer but increases in winter, in contrast to the situation in semi-arid regions. For river discharge, our results indicate an average increase of ~ 15% during the next few centuries. The discharges from Arctic rivers such as the Mackenzie and Ob' increase by much larger fractions. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra also increase considerably. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller.  相似文献   
2.
3.
The Aptian-Albian 'Scisti a Fucoidi' varicoloured pelagic sediments in central Italy, show a 'couplet' alternation of carbonate-rich/carbonate-poor layers, which are interpreted as the sedimentary expression of precession (frequency 19–23 kyr). Carbonate content, chromatic variation, and planktonic foraminiferal abundance were analysed at a 1-cm spacing for a 10-m interval of the Piobbico core, specifically drilled through this formation. Spectral analysis of these parameters shows a prominent signal equated to the c . 100 kyr cycle of orbital eccentricity at a sedimentation rate of 5 mm kyr−1. The coherency of the spectral response of each parameter suggests that a single mechanism controlled the whole sedimentary record. Detailed study of planktonic foraminiferal distribution of the same section at 1-mm scale resolves the Milankovitch frequencies of 41 kyr and 18 to 23 kyr, equated with the obliquity and precessional cycles. But foraminiferal abundance is not in phase with carbonate content, which was largely controlled by calcareous nannofossils, but peaked at intermediate carbonate values. The proposed model for explaining the discrepancy at the precessional level is that foraminifera thrived at intermediate values of the precession index, when the environment was only moderately fertile but stable, while during highs of the precession index, mixing of the water column increased fertility and caused calcareous nannofossil blooms and restriction of planktonic foraminifera to few and tolerant species. The resulting bimodality of foraminiferal abundance per precessional cycle appears to be recorded in the spectrum by peaks at the 11 and 14 kyr levels. Cross correlation of foraminiferal abundances with the calcium carbonate curve over 1–2 Myr intervals produces discrepant results (apparent phase lags) which we attribute to differences in the response to the fundamental eccentricity cycles.  相似文献   
4.
The reconstruction of the main structural features of the Southern Apennines (Italy), in correspondence with the focal volume of some strong earthquakes that have affected this chain, can be attempted by analysing reflection seismic lines and deep well logs in comparison with surface geology.For instance, the Calore Valley and its surroundings have been the object of intense hydrocarbon exploration, and a wealth of subsurface data is available. Moreover, this area was affected by the 1688 Sannio earthquake (macroseismic magnitude 7.1), and a new location has recently been proposed for the related causative fault system. The present work defines the structural setting of the Southern Apennine chain in correspondence with this new location, and compares it with similar cases along the Italian peninsula.The analysis was focussed on the reconstruction of deep tectonic units (formed by the buried Apulia carbonate platform succession), which generally correspond to the hypocentral depths of strong earthquakes along the axis of the Southern Apennines. The results show that the Apulia platform succession is affected by three main thrusts, locally accompanied by backthrusts. The top of this succession is relatively shallow: the maximum depth does not exceed 1.8 s TWT (i.e. about 3500 m b.s.l.), while minimum depths occur in correspondence with the ramp anticlines culminations, at 0.5 s TWT (i.e. at about 500 m b.s.l.). Moreover, data suggest that the underlying Paleozoic basement is possibly involved in thrusting.In a regional perspective, extensional seismogenic structures along the axis of the Southern Apennines seem to share some common characteristics. Indeed, they develop (i) in correspondence with an uplifted Paleozoic basement; (ii) at the rear of a set of thrusts that account for the shallow Apulia units; (iii) at the surface, in proximity to the leading edge of a surficial tectonic unit formed by the Apennine carbonate platform succession. The 1688 seismogenic fault system fits in with these common traits. In the light of this, we finally speculate that these common characteristics in the architecture of the chain could provide a key to the location of the major seismicity along the axis of the Southern Apennines and an interpretative model for the identification of possible areas of seismic gap in this part of the Italian peninsula.  相似文献   
5.
Most combination equations for evaporation rely on a linear expansion of the saturation vapor-pressure curve around the air temperature. Because the temperature at the surface may differ from this temperature by several degrees, and because the saturation vapor-pressure curve is nonlinear, this approximation leads to a certain degree of error in those evaporation equations. It is possible, however, to introduce higher-order polynomial approximations for the saturation vapor-pressure curve and to derive a family of explicit equations for evaporation, having any desired degree of accuracy. Under the linear approximation, the new family of equations for evaporation reduces, in particular cases, to the combination equations of H. L. Penman (Natural evaporation from open water, bare soil and grass,Proc. R. Soc. London, Ser. A 193, 120–145, 1948) and of subsequent workers. Comparison of the linear and quadratic approximations leads to a simple approximate expression for the error associated with the linear case. Equations based on the conventional linear approximation consistently underestimate evaporation, sometimes by a substantial amount.  相似文献   
6.
7.
The Periadriatic foredeep (Italy) was generated by Neogene downbending of the Adria Plate under the Apennine Chain. The basin is filled with Plio-Pleistocene siliciclastic turbidites. Its substratum consists of the carbonate succession of the southwestern Adria Plate margin. The influence of the basin’s morphology on sedimentation and subsequent tectonic evolution is investigated in the Abruzzo sector of the foredeep (Cellino Basin). The substratum is composed of Messinian evaporites that dip towards the Apennines (W). A NNW component along the depocentral axis is divided into four blocks with different depths. The substratum was also affected by a Messinian extensional fault system, not involving the overlying Pliocene sequence. This morphology controlled the distribution of the turbidites in the lower part of the Cellino Basin. The Plio-Pleistocene compressional deformation of the foredeep produced an inner complex structure (Internal Structure), involving the foredeep substratum and an outer imbricate thrust system (Coastal Structure), detached over the faulted Messinian evaporites. This thrust system is parallel to the extensional faults, suggesting a strong influence of the substratum morphology on the development of the compressional structures. The overall structural setting was validated with a balanced cross-section. Out-of-sequence thrusting and non-coeval deformation within each thrust sheet characterize the local tectonic history.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号