首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   4篇
地质学   8篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
India is prone to earthquake hazard; almost 65 % area falls in high to very high seismic zones, as per the seismic zoning map of the country. The Himalaya and the Indo-Gangetic plains are particularly vulnerable to high seismic hazard. Any major earthquake in Himalaya can cause severe destruction and multiple fatalities in urban centers located in the vicinity. Seismically induced ground motion amplification and soil liquefaction are the two main factors responsible for severe damage to the structures, especially, built on soft sedimentary environment. These are essentially governed by the size of earthquake, epicentral distance and geology of the area. Besides, lithology of the strata, i.e., sediment type, grain size and their distribution, thickness, lateral discontinuity and ground water depth, play an important role in determining the nature and degree of destruction. There has been significant advancement in our understanding and assessment of these two phenomena. However, data from past earthquakes provide valuable information which help in better estimation of ground motion amplification and soil liquefaction for evaluation of seismic risk in future and planning the mitigation strategies. In this paper, we present the case studies of past three large Indian earthquakes, i.e., 1803 Uttaranchal earthquake (Mw 7.5); 1934 Bihar–Nepal earthquake (Mw 8.1) and 2001 Bhuj earthquake (Mw 7.7) and discuss the role of soft sediments particularly, alluvial deposits in relation to the damage pattern due to amplified ground motions and soil liquefaction induced by the events. The results presented in the paper are mainly focused around the sites located on the river banks and experienced major destruction during these events. It is observed that the soft sedimentary sites located even far from earthquake epicenter, with low water saturation, experienced high ground motion amplification; while the sites with high saturation level have undergone soil liquefaction. We also discuss the need of intensifying studies related to ground motion amplification and soil liquefaction in India as these are the important inputs for detailed seismic hazard estimation.  相似文献   
2.
Identification and characterization of active faults and deciphering their seismic potential are of vital importance in seismic hazard assessment of any region. Seismic vulnerability of India is well known as more than 60 % of its area lies in high hazard zones due to the presence of major active faults in its plate boundaries and continental interiors, which produced large earthquakes in the past and have potential to generate major earthquakes in future. The safety of critical establishments, like Power plants, Refinaries and other lifeline structures is a major concern in these areas and calls for a better characterization of these faults to help mitigate the impact of future earthquakes. The paper provides a brief overview of the work carried out in India on active fault research, its limitations and immediate priorities.  相似文献   
3.
The Indian subcontinent is characterized by various tectonic units viz., Himalayan collision zone in North, Indo-Burmese arc in north-east, failed rift zones in its interior in Peninsular Indian shield and Andaman Sumatra trench in south-east Indian Territory. During the last about 100 years, the country has witnessed four great and several major earthquakes. Soon after the occurrence of the first great earthquake, the Shillong earthquake (M w: 8.1) in 1897, efforts were started to assess the seismic hazard in the country. The first such attempt was made by Geological Survey of India in 1898 and since then considerable progress has been made. The current seismic zonation map prepared and published by Bureau of Indian Standards, broadly places seismic risk in different parts of the country in four major zones. However, this map is not sufficient for the assessment of area-specific seismic risks, necessitating detailed seismic zoning, that is, microzonation for earthquake disaster mitigation and management. Recently, seismic microzonation studies are being introduced in India, and the first level seismic microzonation has already been completed for selected urban centres including, Jabalpur, Guwahati, Delhi, Bangalore, Ahmadabad, Dehradun, etc. The maps prepared for these cities are being further refined on larger scales as per the requirements, and a plan has also been firmed up for taking up microzonation of 30 selected cities, which lie in seismic zones V and IV and have a population density of half a million. The paper highlights the efforts made in India so far towards seismic hazard assessment as well as the future road map for such studies.  相似文献   
4.
5.
6.
Journal of Seismology - We investigate the attenuation characteristics of high frequency seismic waves in the Kishtwar and its adjoining region of NW Himalaya using 161 local earthquakes (M...  相似文献   
7.
The largest earthquake (Mw 8.4 to 8.6) in Himalaya reported so far occurred in Assam syntaxial bend in 1950. However, some recent studies have suggested for earthquake of magnitude Mw 9 or more in the Himalayan region. In this paper, we present a detailed analysis of seismological data extending back to 1200 AD, and show that earthquake in Himalayan region may not be expected to be as large as those of subduction zones. Also, there appears to be a lateral variation in the earthquake magnitude, being lesser in the western syntaxial bend when compared close to the eastern syntaxial bend. This is attributed to the difference in the plate boundary scenario; dominance of strike-slip and thrusting along the western syntaxis as against thrusting and remnant subduction along the eastern syntaxis.  相似文献   
8.
Science and Technology (S & T) interventions are considered to be very important in any effort related to earthquake risk reduction. Their three main components are: earthquake forecast, assessment of earthquake hazard, and education and awareness. In India, although the efforts towards earthquake forecast were initiated about two decades ago, systematic studies started recently with the launch of a National Program on Earthquake Precursors. The quantification of seismic hazard, which is imperative in the present scenario, started in India with the establishment of first seismic observatory in 1898 and since then a substantial progress has been made in this direction. A dedicated education and awareness program was initiated about 10 years ago to provide earthquake education and create awareness amongst the students and society at large. The paper highlights significant S & T efforts made in India towards reduction of risk due to future large earthquakes.  相似文献   
9.
The paper examines the predominant fault rupture directivity during large earthquakes in different sectors of the Himalaya which influences strong ground motion and damage scenario. The nature of the faulting of earthquakes vis-à-vis their rupture directivity has been discussed. It is found that the rupture directivity near the Indo-Eurasian plate boundary varies from place to place i.e. either along the strike direction of the faults or at right angles to it. The secondary meizoseismal areas as observed for 1505 Dharchula, 1803 Uttarakhand, 1905 Kangra earthquakes in the Himalaya and 2001 Bhuj earthquake in stable continental region suggest that they are a fairly good indicator of predominant rupture directivity since the latter accentuates the site response up to a longer distance. The resulting larger ground motions, therefore, need to be incorporated in the design of engineering structures by suitable modifications in the BIS code.  相似文献   
10.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号