首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   1篇
地球物理   5篇
地质学   8篇
天文学   1篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2004年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有14条查询结果,搜索用时 46 毫秒
1.
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism.  相似文献   
2.
We have searched for very high energy (VHE) gamma rays from four blazars using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C 279, performed from 2005 to 2009, applying a new analysis to suppress the effects of the position dependence of Cherenkov images in the field of view. No significant VHE gamma ray emission was detected from any of the four blazars. The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT archival data. Wide range (radio to VHE gamma-ray bands) spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV gamma-ray spectra, and archival data, even though they are non-simultaneous, are discussed using a one-zone synchrotron self-Compton (SSC) model in combination with a external Compton (EC) radiation. The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model, and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC model. We find a consistency with the blazar sequence in terms of strength of magnetic field and component size.  相似文献   
3.
The convex form of subduction-stage pressure–temperature ( P–T ) paths up to c. 2.0 GPa implies the Sambagawa high- P metamorphic belt, Japan, formed a few million years before ridge subduction. Additional compilation of P–T conditions for higher- P Sambagawa rocks ( c. 2.0–2.5 GPa) reveals that the thermal profile along the slab surface shows a remarkable high- T -ward warping at c. 2.0 GPa ( c. 65 km). Previous thermal models indicate that this warping corresponds to the onset of induced mantle flow towards the subducting slab. If a normal thickness continental crust of c. 30 km was present, this implies the hangingwall region between 30 and 65 km depth was occupied by serpentinized wedge mantle isolated from large-scale mantle flow. Subsequent arrival of the spreading ridge, reheating and dehydration of the serpentinized wedge probably supplied the water necessary for causing granitic magmatism in the Ryoke high- T metamorphic belt, which is paired with the Sambagawa belt.  相似文献   
4.
Antigorite (Atg) is stable throughout large parts of the wedge mantle of most subduction zones. Atg shows strong acoustic anisotropy and crystallographic preferred orientation (CPO) patterns of this mineral may contribute significantly to seismic anisotropy in convergent margins. Atg CPO patterns from the Higashi-Akaishi (HA) forearc mantle body of southwest Japan adds to the data set suggesting the most common Atg CPO pattern has a c-axis perpendicular to the foliation and a b-axis parallel to the stretching lineation. Statistical analysis using the eigenvector method of Atg CPO from two mutually perpendicular directions in the same sample (YZ-section and XZ-section) shows no significant differences implying sample preparation has no significant affect on the resulting Atg CPO. Reuss (uniform stress) averages of anisotropy for the Higashi-Akaishi samples are approximately treble the values for Voigt (uniform strain) averages. When comparing calculated anisotropy of hydrated mantle peridotite samples—such as the Higashi-Akaishi unit—with observed S-wave delay times in convergent margins, the appropriate averaging method needs to be considered.  相似文献   
5.
Mineralogy and Petrology - We examine ultramafic and olivine-rich troctolite blocks of the East Taiwan Ophiolite (ETO) in the Lichi Mélange. Although ultramafic rocks are extensively...  相似文献   
6.
Structural changes of synthetic opal by heat treatment   总被引:1,自引:0,他引:1  
The structural changes of synthetic opal by heat treatment up to 1,400 °C were investigated using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared and Raman spectroscopies. The results indicate that the dehydration and condensation of silanol in opal are very important factors in the structural evolution of heat-treated synthetic opal. Synthetic opal releases water molecules and silanols by heat treatment up to 400 °C, where the dehydration of silanol may lead to the condensation of a new Si–O–Si network comprising a four-membered ring structure of SiO4 tetrahedra, even at 400 °C. Above 600 °C, water molecules are lost and the opal surface and internal silanol molecules are completely dehydrated by heat effect, and the medium-temperature range structure of opal may begin to thermally reconstruct to six-membered rings of SiO4 tetrahedra. Above 1,000 °C, the opal structure almost approaches that of silica glass with an average structure of six-membered rings. Above 1,200 °C, the opal changes to low-cristobalite; however, minor evidence of low-tridymite stacking was evident after heat treatment at 1,400 °C.  相似文献   
7.
Discontinuous chains of ultramafic rock bodies form part of the 3800–3700 Ma Isua Supracrustal Belt(ISB),hosted in the Itsaq Gneiss Complex of southwestern Greenland.These bodies are among the world’s oldest outcrops of ultramafic rocks and hence an invaluable geologic record.Ultramafic rocks from Lens B in the northwestern limb of ISB show characteristics of several stages of serpentinization and deserpentinization forming prograde and retrograde mineral assemblages.Ti-rich humite-group minerals such as titanian chondrodite(Ti-Chn)and titanian clinohumite(Ti-Chu)often occur as accessory phases in the metamorphosed ultramafic rocks.The Ti-rich humite minerals are associated with metamorphic olivine.The host olivine is highly forsteritic(Fo96-98)with variable Mn O and Ni O contents.The concentrations of the rare-earth elements(REE)and high-field strength elements(HFSE)of the metamorphic olivine are higher than typical mantle olivine.The textural and chemical characteristics of the olivine indicate metamorphic origin as a result of deserpentinization of a serpentinized ultramafic protolith rather than primary assemblage reflecting mantle residues from high-degrees of partial melting.The close association of olivine,antigorite and intergrown Ti-Chn and Ti-Chu suggests pressure condition between$1.3–2.6 GPa within the antigorite stability field(<700°C).The overall petrological and geochemical features of Lens B ultramafic body within the Eoarchean ISB indicate that these are allochthonous ultramafic rocks that recorded serpentine dehydration at relatively lower temperature and reached eclogite facies condition during their complex metamorphic history similar to exhumed UHP ultramafic rocks in modern subduction zone channels.  相似文献   
8.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   
9.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
Space‐borne passive microwave snow water equivalent (SWE) retrieval algorithms are attractive for continuous SWE monitoring over large mountainous areas. The performance of three SWE retrieval algorithms, which were considered relevant for operational purposes, was examined for each month over the Colorado River Basin. In addition, statistical post‐processing was tested as a means of improving the SWE estimates from each algorithm. The evaluation started with the so‐called Chang equation, which was a pioneer algorithm and is still used in practice. Successive attempts were then made to improve the algorithm's performance through the calibration of the equation's coefficient and through the inclusion of brightness temperature data from various frequency channels. The Chang equation consistently underestimated SWE with average bias between 30 mm in November and more than 300 mm in April and root mean square error (RMSE) exceeding 500 mm at many locations in April. The statistical post‐processing effectively removed the bias and reduced the RMSE by half for all the months. When the Chang equation's coefficients were calibrated at each site, biases were reduced by approximately 85%, and RMSE was reduced by 40%–50%. Finally, the multiple channel equations produced unbiased SWE estimates with RMSEs 50%–60% of those from the Chang equation. However, the statistical post‐processing did not reduce RMSE for both calibrated algorithms. The last algorithm produced the most reliable estimates for at‐site analysis, but its skill deteriorated when analyses were performed over larger areal extents; therefore, it is only recommended for SWE monitoring over smaller areas. For larger areas, the calibrated Chang equation is desirable because it only requires interpolations of a calibrated coefficient, which was spatially coherent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号