首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
地球物理   2篇
天文学   1篇
自然地理   6篇
  2017年   1篇
  2010年   1篇
  2008年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
排序方式: 共有9条查询结果,搜索用时 546 毫秒
1
1.
Five samples from historical lava flows on Mt. Etna, which had previously been used in a palaeointensity study, were examined using a combination of rock magnetic and microscopic techniques to elucidate the causes of failure of palaeointensity determination. The samples were characterised using a combination of low-temperature susceptibility (LT-), Bitter pattern imaging and scanning electron microscope (SEM). High-temperature susceptibility curves and hysteresis loops had been previously measured by Calvo et al. (2001). Of the five samples only one gave an accurate palaeointensity. This sample was deuterically oxidised and consisted of large exsolved ore grains. It was only possible to distinguish this sample either optically or magnetically from a similar sample by the LT- warming curves; the unsuccessful sample displayed alteration in the LT- warming curves, which was not readily observed in the high temperature susceptibility curves. It is proposed that the measurement of LT- curves before and after heating could be a more sensitive method of determining suitability for palaeointensity determination than previous rock magnetic pre-selection techniques.  相似文献   
2.
3.
In this paper, the mechanisms of low-temperature demagnetization of remanence in multidomain magnetite are considered. New experimental observations of the behaviour of the saturation isothermal remanence, thermoremanence and partial thermoremanence at low temperatures are presented. The results show that there are two main contributions to this low-temperature demagnetization. The first and predominant contribution (type-1 demagnetization) is due to 'kinematic' domain state reorganization and occurs throughout cooling from room temperature to the Verwey transition, T v , at 120–124  K. The second contribution arises from the change in anisotropy from cubic to monoclinic at T v , which changes the overall domain structure of the grain. On warming in zero field, some domain walls will not return to their original positions but will take up a position that leads to a lower net remanence (type-2 demagnetization). In stoichiometric magnetite, demagnetization does not occur at 130  K at the isotropic point, T k , contrary to some previous predictions. In non-stoichiometric magnetite, the influence of the Verwey transition is greatly reduced, and anomalous behaviour is observed at T k .  相似文献   
4.
5.
Paleomagnetic data from lithic clasts collected from Mt. St. Helens, USA, Volcán Láscar, Chile, Volcán de Colima, Mexico and Vesuvius, Italy have been used to determine the emplacement temperature of pyroclastic deposits at these localities and to highlight the usefulness of the paleomagnetic method for determining emplacement temperatures. At Mt. St. Helens, the temperature of the deposits (T dep ) at three sites from the June 12, 1980 eruption was found to be ≥532°C, ≥509°C, and 510–570°C, respectively. One site emplaced on July 22, 1980 was emplaced at ≥577°C. These new paleomagnetic temperatures are in good agreement with previously published direct temperature measurements and paleomagnetic estimates. Lithic clasts from pyroclastic deposits from the 1993 eruption of Láscar were fully remagnetized above the respective Curie temperatures, which yielded a minimum T dep of 397°C. Samples were also collected from deposits thought to be pyroclastics from the 1913, 2004 and 2005 eruptions of Colima. At Colima, the sampled clasts were emplaced cold. This is consistent with the sampled clasts being from lahar deposits, which are common in the area, and illustrates the usefulness of the paleomagnetic method for distinguishing different types of deposit. T dep of the lower section of the lithic rich pyroclastic flow (LRPF) from the 472 A.D. deposits of Vesuvius was ~280–340°C. This is in agreement with other, recently published paleomagnetic measurements. In contrast, the upper section of the LRPF was emplaced at higher temperatures, with T dep ~520°C. This temperature difference is inferred to be the result of different sources of lithic clasts between the upper and lower sections, with the upper section containing a greater proportion of vent-derived material that was initially hot. Our studies of four historical pyroclastic deposits demonstrates the usefulness of paleomagnetism for emplacement temperature estimation.  相似文献   
6.
The low-temperature magnetic properties of magnetite are reviewed, and implications for rock magnetism considered. The behaviour of fundamental properties of magnetite at low temperatures near the Verwey transition ( T v ) are documented, and attention is given to various Verwey transition theories. The low-temperature behaviour of the magnetic energies that control domain structure is reviewed in detail. For the first time in rock magnetic literature, the low-temperature anomaly in spontaneous magnetization ( M s ) is documented and the differences between the saturation magnetization and M s near the Verwey transition are discussed. It is argued that the low-temperature behaviour of the magnetocrystalline anisotropy, and in particular the anomaly at T v , is most likely to affect multidomain remanence during low-temperature cycling. For multidomain crystals it is calculated that the large increase in magnetocrystalline anisotropy intensity and reduction in symmetry on cooling through T v is likely to reduce the stability of closure domains.  相似文献   
7.
8.
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号