首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   8篇
大气科学   2篇
地球物理   22篇
地质学   1篇
海洋学   3篇
天文学   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有29条查询结果,搜索用时 218 毫秒
1.
This study investigated the adsorption and precipitation of phosphate by blast furnace slag (BFS) separately.

In order to evaluate the adsorption capacity of BFS, BFS was treated before its use by acid. The authors aim to develop a new porous carrier to adsorb simultaneously ammonium and phosphate from seawater under eutrophic conditions. The current paper deals with a promising new approach to improve the utilization of some industrial solid wastes such as BFS and zeolite synthesized from fly ash [ZFA(Fe)] by their solidification to cylindrical porous carriers using a hydrothermal hot-pressing (HHP) method.

Attempts to produce porous carriers using an arranged HHP method with different porosities (24%, 40% and 52% (v/v)) were carried out. Physical properties of carriers such as porosity, compressive strength and height have been investigated. Laboratory studies showed strong evidence that the porous carrier was very selective towards phosphate and ammonium. The results demonstrated the role of porosity in enhancing phosphate and ammonium adsorption by the increase of the surface area per weight. The estimates of the parameters and the correlation coefficients according to the Freundlich equations revealed that adsorption was related to the porosity of carriers and phosphate and ammonium were adsorbed well on the carriers having large porosity.

The results suggested that developing carrier with high porosity was a promising way to enhance nutrients adsorption.  相似文献   

2.
3.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
4.
Earthquake engineering research and development have received much attention since the first half of the twentieth century. This valuable research presented a huge step forward in understanding earthquake hazard mitigation, which resulted in appreciable reduction of the effects of past earthquakes. Nevertheless, the 2011 Tohoku earthquake and the subsequent tsunami resulted in major damage. This paper presents the timeline of earthquake mitigation and recovery, as seen by the authors. Possible research directions where the authors think that many open questions still remain are identified. These are primarily based on the important lessons learned from the 2011 Tohoku earthquake.  相似文献   
5.
The investigations were carried out at 6 tidal flats located on the eastern part of the Seto Inland Sea, Japan. This study was focused on physical characteristics of sediments, namely as particle size of sediment and difference in elevation, and generalizes the relationship between sediments and macrobenthos. A total of 192 species were collected at 187 stations at 6 tidal flats. Physical characteristics of sediment were classified into 9 groups by cluster analysis in relation to sediment particle size and difference in elevation. Those groups had also significant difference in physical characteristics of sediments, and were characterized by some specific macrobenthos species. Distribution of macrobenthos can be explained by the classification of physical characteristics of sediment. These findings show the possibility to predict the variety of macrobenthos community using the physical characteristics of sediment.  相似文献   
6.
7.
Algae growing in an enclosed sea may inhibit eutrophication because they absorb nutrients in the water. However, dead algae often cause anaerobic conditions in the water just above and on sediment after they are deposited on the bottom. We found that Stichopus japonicus inhibited the anaerobic processes coupling water sulfite production in sediment. The present study investigates whether S. japonicus inhibits algal flourish and influences sediment properties such as organic matter contents. Aquarium experiments were carried out at Komatsushima port in Tokushima Prefecture, western Japan. The aquaria used in the experiments were supplied with water directly from the adjacent sea (6 L/min), laid with sand of 10 cm depths, and lighted at 12 h intervals. Six aquaria each containing a sea cucumber from Komatsushima port and six aquaria without any were used in the experiments. Water temperature ranged between 9 and 15 degrees C during December 2000 and April 2001. Salinity ranged between 32 per thousand and 34 per thousand. Algae began to cover the bottom of the aquaria without S. japonicus after 2 weeks, whereas no growth was evident in the aquaria containing sea cucumbers. Chlorophyll a concentration in the surface sediment of the aquaria with S. japonicus (6.1+/-3.6 microg/g, mean S.D.+/-standard deviation) was significantly lower than that without it (60+/-17 microg/g, U-test, p<0.05). Phaeophytin concentration in the surface sediment of the aquaria with S. japonicus (0.9+/-0.09 microg/g) was also significantly lower than that without it (4.5+/-1.0 microg/g, U-test, p<0.05). TOC concentration in the surface sediment of the aquaria with S. japonicus (2.6+/-1.3 microg/g) was slightly lower than that without it (4.0+/-1.2 microg/g). These results showed that algal biomass and organic matter concentration of the bottom were decreased in the presence of S. japonicus. Therefore, S. japonicus inhibits algal bloom and decrease the contents of organic matter deposited on the bottom of enclosed sea areas.  相似文献   
8.
A series of full‐scale shaking table tests were conducted at E‐Defense for a four‐story base‐isolated hospital. The operation room in the specimen was chosen for detailed examination of its disorder and damage during large ground motions. It was arranged with various medical appliances in as a realistic manner as possible, and the appliances were characterized by casters installed at the bottom to ensure mobility. Two types of ground motion, the near‐fault ground motion and long‐period ground motion, were adopted, and the responses of the appliances were recorded using the motion capture technique. Thanks to the base isolation, the floor response was greatly reduced, and no disorder or damage was observed in the operation room except for the case when subjected to a long‐period ground motion. In this case, the unlocked appliances moved seriously (by more than 3 m), and collisions occurred between the appliances and between appliances and the surrounding wall. The force of collision reached 36 kN, which is sufficient to injure a person. The acceleration due to collision was as high as 10 g, which is far beyond what can be tolerated by acceleration‐sensitive appliances. It is notable that such large motion was not observed once the appliances were locked. The test was also carried out for the corresponding fixed‐base structure. Among all cases in the experiment, by far the most serious damage occurred in the fixed‐base structure when subjected to the near‐fault ground motion, clearly because the floor response was significantly amplified from the ground motion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
The performance of nonstructural components has attracted attention, and previous large earthquakes have resulted in widespread damage to expansion joints. In contrast to the main structural components, for which ductility beyond the design tolerance is ensured, the safety margin of nonstructural components classified as the product of mechanical engineering, such as expansion joints, is uncertain. This paper investigates the damage sequence and safety margin of expansion joints through shake table testing. The expansion joints were installed to connect 2 rigid steel frames with short and long natural periods. Four commonly used types, high-performance and standard-performance floor and wall expansion joints, were tested. Seven damage patterns of the 4 expansion joints were observed, and most of the damage patterns were considered displacement dependent. The damage mechanisms and relative displacements at the moment of damage were identified by using strain gauges attached near collision and damage locations. The high-performance expansion joints showed only minor damage beyond the design motion range, whereas the standard-performance expansion joints exhibited minor damage below the design motion range and failure at the design motion range or slightly beyond. For each damage state, repair information was obtained through a questionnaire to an expansion joint manufacturer, and the sum of the initial cost and repair cost for high-performance and standard-performance expansion joints was compared. The results will be useful for the selection of expansion joints in the design process.  相似文献   
10.
Damage or collapse of buildings vulnerable to seismic forces may cause human casualties, and seismic upgrading of such structures is a practical solution to this deficiency. The study presented here proposes a simple approach to prevent structural collapse by separating the superstructure from its foundation to let the superstructure slide during extreme ground shaking. The sliding mechanism contributes to cap the horizontal force exerted on the superstructure. In such approach, the key is to maintain the friction force between the superstructure and the foundation sufficiently low and stable. This research proposes to realize a controlled sliding mechanism, which acts as a structural fuse, by means of carbon powder lubrication at the bases of the structure's columns. The fundamental behaviour of the proposed structural system, named the base shear capping building, is investigated by shaking table tests and numerical simulation. Both experimental and numerical results showed that graphite lubrication is an efficient and robust lubrication material, maintaining the friction coefficient between the steel column bases and mortar foundation at around 0.16. The sliding at the bases significantly reduced the acceleration transmitted to the superstructure, keeping the base shear coefficient not greater than about 0.40. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号