首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   10篇
测绘学   7篇
大气科学   6篇
地球物理   29篇
地质学   28篇
海洋学   2篇
天文学   9篇
自然地理   7篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   10篇
  2019年   8篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  1997年   1篇
  1994年   2篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils.  相似文献   
2.
An important task in modern geostatistics is the assessment and quantification of resource and reserve uncertainty. This uncertainty is valuable support information for many management decisions. Uncertainty at specific locations and uncertainty in the global resource is of interest. There are many different methods to build models of uncertainty, including Kriging, Cokriging, and Inverse Distance. Each method leads to different results. A method is proposed to combine local uncertainties predicted by different models to obtain a combined measure of uncertainty that combines good features of each alternative. The new estimator is the overlap of alternate conditional distributions.  相似文献   
3.
4.
5.
6.
ABSTRACT

Accurate runoff forecasting plays a key role in catchment water management and water resources system planning. To improve the prediction accuracy, one needs to strive to develop a reliable and accurate forecasting model for streamflow. In this study, the novel combination of the adaptive neuro-fuzzy inference system (ANFIS) model with the shuffled frog-leaping algorithm (SFLA) is proposed. Historical streamflow data of two different rivers were collected to examine the performance of the proposed model. To evaluate the performance of the proposed ANFIS-SFLA model, six different scenarios for the model input–output architecture were investigated. The results show that the proposed ANFIS-SFLA model (R2 = 0.88; NS = 0.88; RMSE = 142.30 (m3/s); MAE = 88.94 (m3/s); MAPE = 35.19%) significantly improved the forecasting accuracy and outperformed the classic ANFIS model (R2 = 0.83; NS = 0.83; RMSE = 167.81; MAE = 115.83 (m3/s); MAPE = 45.97%). The proposed model could be generalized and applied in different rivers worldwide.  相似文献   
7.
ABSTRACT

For evaluating the progresses towards achieving the Sustainable Development Goals (SDGs), a global indicator framework was developed by the UN Inter-Agency and Expert Group on Sustainable Development Goals Indicators. In this paper, we propose an improved methodology and a set of workflows for calculating SDGs indicators. The main improvements consist of using moderate and high spatial resolution satellite data and state-of-the-art deep learning methodology for land cover classification and for assessing land productivity. Within the European Network for Observing our Changing Planet (ERA-PLANET), three SDGs indicators are calculated. In this research, harmonized Landsat and Sentinel-2 data are analyzed and used for land productivity analysis and yield assessment, as well as Landsat 8, Sentinel-2 and Sentinel-1 time series are utilized for crop mapping. We calculate for the whole territory of Ukraine SDG indicators: 15.1.1 – ‘Forest area as proportion of total land area’; 15.3.1 – ‘Proportion of land that is degraded over total land area’; and 2.4.1 – ‘Proportion of agricultural area under productive and sustainable agriculture’. Workflows for calculating these indicators were implemented in a Virtual Laboratory Platform. We conclude that newly available high-resolution remote sensing products can significantly improve our capacity to assess several SDGs indicators through dedicated workflows.  相似文献   
8.
9.
A maximum a posteriori (MAP) technique is developed to identify solar features in cotemporal and cospatial images of line-of-sight magnetic flux, continuum intensity, and equivalent width observed with the NASA/National Solar Observatory (NSO) Spectromagnetograph (SPM). The technique facilitates human understanding of patterns in large data sets and enables systematic studies of feature characteristics for comparison with models and observations of long-term solar activity and variability. The method uses Bayes’ rule to compute the posterior probability of any feature segmentation of a trio of observed images from per-pixel, class-conditional probabilities derived from independently-segmented training images. Simulated annealing is used to find the most likely segmentation. New algorithms for computing class-conditional probabilities from three-dimensional Gaussian mixture models and interpolated histogram densities are described and compared. A new extension to the spatial smoothing in the Bayesian prior model is introduced, which can incorporate a spatial dependence such as center-to-limb variation. How the spatial scale of training segmentations affects the results is discussed, and a new method for statistical separation of quiet Sun and quiet network is presented.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号