首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   1篇
地质学   3篇
  2019年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The presence of internal variability (IV) in ensembles of nested regional climate model (RCM) simulations is now widely acknowledged in the community working on dynamical downscaling. IV is defined as the inter-member spread between members in an ensemble of simulations performed by a given RCM driven by identical lateral boundary conditions (LBC), where different members are being initialised at different times. The physical mechanisms responsible for the time variations and structure of such IV have only recently begun to receive attention. Recent studies have shown empirical evidence of a close parallel between the energy conversions associated with the time fluctuations of IV in ensemble simulations of RCM and the energy conversions taking place in weather systems. Inspired by the classical work on global energetics of weather systems, we sought a formulation of an energy cycle for IV that would be applicable for limited-area domain. We develop here a novel formalism based on local energetics that can be applied to further our understanding IV. Prognostic equations for ensemble-mean kinetic energy and available enthalpy are decomposed into contributions due to ensemble-mean variables (EM) and those due to deviations from the ensemble mean (IV). Together these equations constitute an energy cycle for IV in ensemble simulations of RCM. Although the energy cycle for IV was developed in a context entirely different from that of energetics of weather systems, the exchange terms between the various reservoirs have a rather similar mathematical form, which facilitates some interpretations of their physical meaning.  相似文献   
2.
Due to the chaotic and nonlinear nature of the atmospheric dynamics, it is known that small differences in the initial conditions (IC) of models can grow and affect the simulation evolution. In this study, we perform a quantitative diagnostic budget calculation of the various diabatic and dynamical contributions to the time evolution and spatial distribution of internal variability (IV) in simulations with the nested Canadian Regional Climate Model. We establish prognostic budget equations of the IV for the potential temperature and the relative vorticity fields. For both of these variables, the IV equations present similar terms, notably terms relating to the transport of IV by ensemble-mean flow and to the covariance of fluctuations acting on the gradient of the ensemble-mean state. We show the skill of these equations to diagnose the IV that took place in an ensemble of 20 3-month (summer season) simulations that differed only in their IC. Our study suggests that the dominant terms responsible for the large increase of IV are either the covariance term involving the potential temperature fluctuations and diabatic heating fluctuations, or the covariance of inter-member fluctuations acting upon ensemble-mean gradients. Our results also show that, on average, the third-order terms are negligible, but they can become important when the IV is large.  相似文献   
3.
The semi-arid Sahel regions of West Africa rely heavily on groundwater from shallow to moderately deep(100 m b.g.l.)crystalline bedrock aquifers for drinking water production.Groundwater quality may be affected by high geogenic arsenic(As)concentrations(10μg/L)stemming from the oxidation of sulphide minerals(pyrite,arsenopyrite)in mineralised zones.These aquifers are still little investigated,especially concerning groundwater residence times and the influence of the annual monsoon season on groundwater chemistry.To gain insights on the temporal aspects of As contamination,we have used isotope tracers(noble gases,~3H,stable water isotopes(~2 H,~(18)O))and performed hydrochemical analyses on groundwater abstracted from tube wells and dug wells in a small study area in southwestern Burkina Faso.Results revealed a great variability in groundwater properties(e.g.redox conditions,As concentrations,water level,residence time)over spatial scales of only a few hundred metres,characteristic of the highly heterogeneous fractured underground.Elevated As levels are found in oxic groundwater of circum-neutral pH and show little relation with any of the measured parameters.Arsenic concentrations are relatively stable over the course of the year,with little effect seen by the monsoon.Groundwater residence time does not seem to have an influence on As concentrations,as elevated As can be found both in groundwater with short(50 a)and long(10~3 a)residence times as indicated by ~3He/~4He ratios spanning three orders of magnitude.These results support the hypothesis that the proximity to mineralised zones is the most crucial factor controlling As concentrations in the observed redox/pH conditions.The existence of very old water portions with residence times10~3 years already at depths of50 m b.g.l.is a new finding for the shallow fractured bedrock aquifers of Burkina Faso,suggesting that overexploitation of these relatively low-yielding aquifers may be an issue in the future.  相似文献   
4.
Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.  相似文献   
5.
In many regions of the world and especially in arid and semi-arid areas, groundwater is the major source of drinking water for most of the rural population. The main reason is probably its accessibility through hand-dug wells. However, the resource is supplied in most of the cases to the population as raw water because groundwater is assumed to be safe. In that situation, the water chemistry and quality is usually not well known. Therefore, a study in Tikaré, northern Burkina Faso (West Africa) was carried out analysing fourteen trace elements to characterise their concentration patterns and correlations. The assessment of the quality and the chemistry of water resources is also done in order to forecast if any danger to the population might exist regarding the trace elements. The samples analysed were from 22 wells, 2 boreholes and 1 surface water location (small dam) in a laterite environment. This dam is recharging water to the underlying aquifer during and short after the rainy season. It was found that the most dominated trace elements are Fe and Mn. In summary, nearly all the studied trace elements were below the recommended limit in the drinking water guidelines of the WHO (Guidelines from Drinking Water Standards, 1984). The main source of the trace elements in groundwater seems to be the bedrock dominated by volcano-sedimentary schist and basalt. At least for the analysed area, with only limited traditional mining activities close to the sampling zone, there is no danger for humans to consume the extracted water regarding the analysed trace elements. Some good relationships were also found between some trace elements and major ions.  相似文献   
6.
About 24 samples from hand-dug wells and boreholes were used to characterize concentrations of the main inorganic ions in a laterite environment under semi-arid climatic conditions in Tikaré, northern Burkina Faso. It was found that the most represented groundwater anion in groundwater was HCO3 with average levels of 49.1 mg/L in the dry season and 33.5 mg/L in the rainy season. The most represented cation was Ca2+ with mean concentrations of 13.7 and 9.5 mg/L, respectively. The main processes, which influence the concentrations of these ions, are evaporation (dry season), local enrichment of recharge water in some elements, ion exchange and fixation by clay minerals (in case of K+). The best correlations were found between Ca2+ and Mg2+ (r = 0.95), Cl and Na+ (r = 0.95), HCO3 and Mg2+ (r = 0.89), HCO3 and Ca2+ (r = 0.89), and between HCO3 and Na+ (r = 0.80). In general, the quality of the groundwater from the different wells sampled for this study was good enough to serve as drinking water. However, there were situations where the quality of water was polluted because of anthropogenic contaminants (mainly NO3 , K+, Cl) from septic tanks and manure pits located in the vicinity of some sampled wells. In addition, application of fertilizers also represents a potential anthropogenic contamination source with regard to SO4 2−, Ca2+, K+, Na+, and Mg2+. Considering the high concentrations of SO4 2−, Mg2+, Na+ and Ca2+ found in one borehole, the deeper, fractured aquifers were also likely to be enriched in these elements. In contrast, the shallow aquifers are likely to be contaminated with Cl, NO3 and K+. Cl and K+ seem to be locally present in recharge water as shown by their relative higher mean concentrations in the rainy season samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号