首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   81篇
  国内免费   4篇
测绘学   32篇
大气科学   64篇
地球物理   315篇
地质学   298篇
海洋学   71篇
天文学   188篇
综合类   2篇
自然地理   44篇
  2023年   5篇
  2022年   5篇
  2021年   16篇
  2020年   22篇
  2019年   18篇
  2018年   43篇
  2017年   49篇
  2016年   55篇
  2015年   41篇
  2014年   54篇
  2013年   45篇
  2012年   44篇
  2011年   57篇
  2010年   56篇
  2009年   58篇
  2008年   37篇
  2007年   43篇
  2006年   27篇
  2005年   28篇
  2004年   31篇
  2003年   22篇
  2002年   28篇
  2001年   24篇
  2000年   14篇
  1999年   15篇
  1998年   20篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   6篇
  1993年   15篇
  1992年   6篇
  1991年   6篇
  1989年   6篇
  1987年   5篇
  1986年   6篇
  1983年   4篇
  1982年   3篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1955年   3篇
  1954年   3篇
  1939年   3篇
排序方式: 共有1014条查询结果,搜索用时 15 毫秒
1.
2.
3.
We analyse a high-redshift sample (0.4 < z < 0.5) of luminous red galaxies (LRGs) extracted from the Sloan Digital Sky Survey data release 4 and their surrounding structures to explore the presence of alignment effects of these bright galaxies with neighbour objects. In order to avoid projection effects, we compute photometric redshifts for galaxies within 3  h −1 Mpc in projection of LRGs and calculate the relative angle between the LRG major axis and the direction to neighbours within 1000 km s−1. We find a clear signal of alignment between LRG orientations and the distribution of galaxies within 1.5  h −1 Mpc. The alignment effects are present only for the red population of tracers; LRG orientation is uncorrelated to the blue population of neighbour galaxies. These results add evidence to the alignment effects between primaries and satellites detected at low redshifts. We conclude that such alignments were already present at z ∼ 0.5.  相似文献   
4.
We investigate the flux of main-belt asteroid fragments into resonant orbits converting them into near-Earth asteroids (NEAs), and the variability of this flux due to chance interasteroidal collisions. A numerical model is used, based on collisional physics consistent with the results of laboratory impact experiments. The assumed main-belt asteroid size distribution is derived from that of known asteroids extrapolated down to sizes of ≈ 40 cm, modified in such a way to yield a quasi-stationary fragment production rate over times ≈ 100 Myr. The results show that the asteroid belt can supply a few hundred km-sized NEAs per year, well enough to sustain the current population of such bodies. On the other hand, if our collisional physics is correct, the number of existing 10-km objects implies that these objects either have very long-lived orbits, or must come from a different source (i.e., comets). Our model predicts that the fragments supplied from the asteroid belt have initially a power-law size distribution somewhat steeper than the observed one, suggesting preferential removal of small objects. The component of the NEA population with dynamical lifetimes shorter than or of the order of 1 Myr can vary by a factor reaching up to a few tens, due to single large-scale collisions in the main belt; these fluctuations are enhanced for smaller bodies and faster evolutionary time scales. As a consequence, the Earth's cratering rate can also change by about an order of magnitude over the 0.1 to 1 Myr time scales. Despite these sporadic spikes, when averaged over times of 10 Myr or longer the fluctuations are unlikely to exceed a factor two.  相似文献   
5.
We use high-quality optical rotation curves of nine low-luminosity disc galaxies to obtain the velocity profiles of the surrounding dark matter haloes. We find that they increase linearly with radius at least out to the edge of the stellar disc, implying that, over the entire stellar region, the density of the dark halo is about constant.
The properties of the mass structure of these haloes are similar to those found for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in the cold dark matter scenario and those actually detected around galaxies. We find that the density law proposed by Burkert reproduces the halo rotation curves, with halo central densities ( ρ 0∼1–4×10−24 g cm−3) and core radii ( r 0∼5–15 kpc) scaling as ρ 0∝ r 0−2/3.  相似文献   
6.
The Rhodiani ophiolites are represented by two tectonically superimposed ophiolitic units: the “lower” Ultramafic unit and the “upper” Volcanic unit, both bearing calcareous sedimentary covers. The Ultramafic unit consists of mantle harzburgites with dunite pods and chromitite ores, and represents the typical mantle section of supra-subduction zone (SSZ) settings. The Volcanic unit is represented by a sheeted dyke complex overlain by a pillow and massive lava sequence, both including basalts, basaltic andesites, andesites, and dacites. Chemically, the Volcanic unit displays low-Ti affinity typical of island arc tholeiite (IAT) ophiolitic series from SSZ settings, having, as most distinctive chemical features, low Ti/V ratios (< 20) and depletion in high field strength elements and light rare earth elements.The rare earth element and incompatible element composition of the more primitive basaltic andesites from the Rhodiani ophiolites can be successfully reproduced with about 15% non-modal fractional melting of depleted lherzolites, which are very common in the Hellenide ophiolites. The calculated residua correspond to the depleted harzburgites found in the Rhodiani and Othrys ophiolites. Both field and chemical evidence suggest that the whole sequence of the Rhodiani Volcanic unit (from basalt to dacite) originated by low-pressure fractional crystallization under partially open-system conditions. The modelling of mantle source, melt generation, and mantle residua carried out in this paper provides new constraints for the tectono-magmatic evolution of the Mirdita–Pindos oceanic basin.  相似文献   
7.
We synthesize the study of coupled natural and human systems across sites and cultures through a process of simplification and abstraction based on multiple dimensions of human-nature connectedness: satisfaction of basic needs, psycho-cultural connectedness and regulation of use of natural resources. We thus provide both a place-based and general understanding of value-driven anthropogenic environmental change and response. Two questions guide this research: what are the crucial stakeholder values that drive land use decisions and thus land cover change? And how can knowledge of these values be used to make decisions and policies that sustain both the human and natural systems in a place? To explore these questions we build simulation models of four study sites, two in the State of Texas, United States, and two in Venezuela. All include protected areas, though they differ in the specifics of vegetation and land use. In the Texas sites, relatively affluent individuals are legally converting forests to residential, commercial, and industrial uses, while in Venezuela landless settlers are extra-legally converting forests for purposes of subsistence agriculture. Contemporary modeling techniques now facilitate simulations of stakeholder and ecosystem dynamics revealing emergent patterns. Such coupled human and natural systems are currently recognized as a form of biocomplexity. Our modeling framework is flexible enough to allow adaptation to each of the study sites, capturing the essential features of the respective natural and anthropogenic land use changes and stakeholder reactions. The interactions between human stakeholders are simulated using multi-agent models that act on forest landscape models, and receive feedback of the effects of these actions on ecological habitats and hydrological response. The multi-agent models employ a formal logic-based method for the Venezuelan sites and a decision analysis approach using multi-attribute utility functions for the Texas sites, differing more in style and emphasis than in substance. Our natural-systems models are generic and can be tailored according to site-specific conditions. Similar models of tree growth and patch transitions are used for all the study sites and the differing responses to environmental variables are specified for each local species and terrain conditions.  相似文献   
8.
High-pressure single-crystal X-ray diffraction measurements of lattice parameters of the compound Li2VOSiO4, which crystallises with a natisite-type structure, has been carried out to a pressure of 8.54(5) GPa at room temperature. Unit-cell volume data were fitted with a second-order Birch-Murnaghan EoS (BM-EoS), simultaneously refining V 0 and K 0 using the data weighted by the uncertainties in V. The bulk modulus is K 0 = 99(1) GPa, with K′ fixed to 4. Refinements of third order equations-of-state yielded values of K′ that did not differ significantly from 4. The compressibility of the unit-cell is strongly anisotropic with the c axis (K 0(c) = 49.7 ± 0.5 GPa) approximately four times more compressible than the a axis (K 0(a) = 195 ± 3 GPa).  相似文献   
9.
We present new sea-level data from the coasts of southern Tunisia, between the Gulf of Gabès and the Libyan border. The work tests, previously, published evidence on Holocene shorelines, and confirmed that a distinct emergence has occurred in this area during this time. The emergence peak lies at least 186 ± 11 cm above present and is inferred from: (1) AMS radiocarbon dates of subtidal vermetids and boring shells collected in growth position, and (2) careful assessment of tidal heights. Maximum emergence took place between about 6000 and 5000 14C years BP; it cannot be ascribed to tectonics and is probably related to post-glacial hydro-isostatic effects. It challenges the inference of a 3-m global sea-level rise since 6000 years BP due to residual Antarctic melting.  相似文献   
10.
The equation obtained in Part I predicts how an exceptionally high wave occurs at any fixed point within a wind wave field. The equation may be applied with a theoretical spectrum or directly with the random time series obtained by an array of wave gauges in the field. From both approaches, it emerges that a very high wave at a breakwater occurs because a well-defined three-dimensional wave group at the apex of its development hits against the breakwater, and that a very high wave at some distance before the breakwater occurs because of the collision of two wave groups: the first one going back after having been reflected, and the second one approaching the breakwater. In order to test the theory, a special breakwater was assembled off the beach at Reggio-Calabria where the significant height of the wind waves typically ranges from 0.20 to 0.40 m. When an exceptionally high wave (H = 9.6 σ) occurred at a point before this breakwater, the records made by a gauge array confirmed all the essential features of the prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号