首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地球物理   12篇
地质学   6篇
天文学   3篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1994年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Pyroclastic density currents (PDC) related to paroxysmal eruptions have caused a large number of casualties in the recent history of Stromboli. We combine here a critical review of historical chronicles with detailed stratigraphic, textural, and petrographic analyses of PDC deposits emplaced at Stromboli over the last century to unravel the origin of currents, their flow mechanism and the depositional dynamics. We focus on the 1930 PDC as they are well described in historical accounts and because the 1930 eruption stands as the most voluminous and destructive paroxysm of the last 13 centuries. Stromboli PDC deposits are recognizable from their architecture and the great abundance of fresh, well-preserved juvenile material. General deposit features indicate that Stromboli PDC formed due to the syn-eruptive gravitational collapse of hot pyroclasts rapidly accumulated over steep slopes. Flow channelization within the several small valleys cut on the flanks of the volcano can enhance the mobility of PDC, as well as the production of fine particles by abrasion and comminution of hot juvenile fragments, thereby increasing the degree of fluidization. Textural analyses and historical accounts also indicate that PDC can be fast (15–20 m/s) and relatively hot (360–700 °C). PDC can thus flow right down the slopes of the volcano, representing a major hazard. For this reason, they must be adequately taken into account when compiling risk maps and evaluating volcanic hazard on the Island of Stromboli.  相似文献   
2.
One of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2 gas values is associated with the gradual (pre- and syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.  相似文献   
3.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   
4.
The present investigation is complementary to a previous paper which introduced the EGO approach to spectral modelling of reflectance measurements acquired in the visible and near-IR range (Pompilio, L., Pedrazzi, G., Sgavetti, M., Cloutis, E.A., Craig, M.A., Roush, T.L. [2009]. Icarus, 201 (2), 781-794). Here, we show the performances of the EGO model in attempting to account for temperature-induced variations in spectra, specifically band asymmetry.Our main goals are: (1) to recognize and model thermal-induced band asymmetry in reflectance spectra; (2) to develop a basic approach for decomposition of remotely acquired spectra from planetary surfaces, where effects due to temperature variations are most prevalent; (3) to reduce the uncertainty related to quantitative estimation of band position and depth when band asymmetry is occurring.In order to accomplish these objectives, we tested the EGO algorithm on a number of measurements acquired on powdered pyroxenes at sample temperature ranging from 80 up to 400 K. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of band asymmetry on reflectance spectra; (2) the returned set of EGO parameters can suggest the influence of some additional effect other than the electronic transition responsible for the absorption feature; (3) the returned set of EGO parameters can help in estimating the surface temperature of a planetary body; (4) the occurrence of absorptions which are less affected by temperature variations can be mapped for minerals and thus used for compositional estimates.Further work is still required in order to analyze the behaviour of the EGO algorithm with respect to temperature-induced band asymmetry using powdered pyroxene spanning a range of compositions and grain sizes and more complex band shapes.  相似文献   
5.
Buoyancy controls the ability of magma to rise, its ascent rate and the style of the eruptions. Geophysical, geological and petrological data have been integrated to evaluate the buoyancy of magmas at Mt Etna. The density difference between host rocks and magmas is mainly related to the amount of H2O dissolved in the magma and to the bubble‐liquid separation processes. In the depth interval 22–2 km b.s.l. highly hydrated (H2O ~ 3%) basaltic magmas or mixtures of bubbles + liquid have positive buoyancy and rise rapidly. Conversely, bubble‐depleted liquids, with an intermediate H2O content (~ 1.5%), having neutral buoyancy, will spread out and form magmatic reservoirs at different depths until cooling/crystallization further modify composition and density. These different processes account for the magma compositions, location of magmatic reservoirs as determined by geophysical methods, and the complex eruptive cycles (slow effusions, fire fountains and Plinian eruptions) that have been observed in the history of the volcano.  相似文献   
6.
Ash fallout collected during 4 days of sampling at Stromboli confirms that a crystal-rich (HP) degassed magma erupts during the Strombolian explosions that are characteristic of the normal activity of this volcano. We identified 3 different types of juvenile ash fragments (fluidal, spongy and dense), which formed through different mechanisms of fragmentation of the low-viscosity, physically heterogeneous (in terms of the size and spatial distribution of bubbles) shoshonitic magma. A small amount (less than 3 vol%) of volatile-rich magma with low porphyricity (LP), erupted as highly vesicular ash fragments, has been collected, together with the HP magma, during normal strombolian explosions. Laboratory experiments and the morphological, textural and compositional investigations of ash fragments reveal that the LP ash is fresh and not recycled from the last paroxysm (15 March 2007). We suggest that small droplets of LP magma are dragged to the surface by the time-variable but persistent supply of deep derived CO2-rich gas bubbles. This coupled ascent of bubbles and LP melts is transient and does not perturb the dynamics of the HP magma within the shallow reservoir. This finding provides a new perspective on how the Stromboli volcano works and has important implications for monitoring strategies.  相似文献   
7.
A set of experiments have been performed on volcanic materials from Etna, Stromboli and Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that of active craters affects the texture and composition of juvenile pyroclasts. Selected samples were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates the melt, which, through processes of chemical and thermal diffusion, reaches new equilibrium conditions. In all the experiments performed at T = 700–750 °C, a large number of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high undercooling. This process creates textural heterogeneities at the scale of few microns but only limited changes of groundmass composition, which remains clustered around that of the natural glasses. Reheating at T = 1,000–1,050 °C promotes massive groundmass crystallization, with a different mineral assemblage as a function of the redox conditions. Morphological modifications of clasts, from softening to sintering as temperature increases, occur under these conditions, accompanied by progressive smoothing of external surfaces, and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-existing vesicularity. The transition from sintering to welding, characteristic of high temperature, is influenced by redox conditions. Experiments at T = 1,100–1,130 °C and under vacuum produce groundmass textures and glass compositions similar to that of the respective starting material. Collapse and welding of the clasts cause significant densification of the whole charge. At the same temperature, but in presence of air, experimental products at least result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on the external surfaces of the clasts or form a lining on the bubble walls. Their shape and composition is a function of temperature and fO2 and the abundance of sublimates shows a peak at 1,000 °C. The identification of the features recorded by pyroclasts during complex heating–cooling cycles allows reconstructing the complete clasts history before their final emplacement, during weakly explosive volcanic activity. This has a strong implication on the characterization of primary juvenile material and on the interpretation of eruption dynamics.  相似文献   
8.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   
9.
Curve fitting techniques are a widespread approach to spectral modeling in the VNIR range [Burns, R.G., 1970. Am. Mineral. 55, 1608-1632; Singer, R.B., 1981. J. Geophys. Res. 86, 7967-7982; Roush, T.L., Singer, R.B., 1986. J. Geophys. Res. 91, 10301-10308; Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. J. Geophys. Res. 95, 6955-6966]. They have been successfully used to model reflectance spectra of powdered minerals and mixtures, natural rock samples and meteorites, and unknown remote spectra of the Moon, Mars and asteroids. Here, we test a new decomposition algorithm to model VNIR reflectance spectra and call it Exponential Gaussian Optimization (EGO). The EGO algorithm is derived from and complementary to the MGM of Sunshine et al. [Sunshine, J.M., Pieters, C.M., Pratt, S.F., 1990. J. Geophys. Res. 95, 6955-6966]. The general EGO equation has been especially designed to account for absorption bands affected by saturation and asymmetry. Here we present a special case of EGO and address it to model saturated electronic transition bands. Our main goals are: (1) to recognize and model band saturation in reflectance spectra; (2) to develop a basic approach for decomposition of rock spectra, where effects due to saturation are most prevalent; (3) to reduce the uncertainty related to quantitative estimation when band saturation is occurring. In order to accomplish these objectives, we simulate flat bands starting from pure Gaussians and test the EGO algorithm on those simulated spectra first. Then we test the EGO algorithm on a number of measurements acquired on powdered pyroxenes having different compositions and average grain size and binary mixtures of orthopyroxenes with barium sulfate. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of saturation effects on reflectance spectra of powdered minerals and mixtures; (2) the systematic dilution of a strong absorber using a bright neutral material is not responsible for band deformation. Further work is still required in order to analyze the behavior of the EGO algorithm with respect to the saturation phenomena using more complex band shapes than pyroxene bands.  相似文献   
10.
During the operations of purging and disposal of sediments of a reservoir it is necessary to know the values of turbidity in the river downstream in natural condition,in the absence of dams or river training works.The paper shows that under these conditions the ratio of the average values of sediment discharge to the annual maximum value of water discharge is a function of the average annual turbidity.Turbidity can be considered as representative synthetic index of the climatic conditions,the lithological features and the land cover of the basin,and the geometric characteristics of the river network.The proposed relationship of sediment discharge as a function of water discharge were validated on the basis of data collected from different Italian regions that have very different morphological,geo-lithological and rainfall features and that are characterised by a basin area changing between a few dozen and thousands of square kilometres.The results can be considered satisfying.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号