首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2001年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This is the final paper in a series on the 3D multicomponent seismic experiment in Oman. In this experiment a 3D data set was acquired using three-component geophones and with three source orientations. The data set will subsequently be referred to as the Natih 9C3D data set. We present, for the first time, evidence demonstrating that shear waves are sensitive to fluid type in fractured media. Two observations are examined from the Natih 9C3D data where regions of gas are characterized by slow shear-wave velocities. One is that the shear-wave splitting map of the Natih reservoir exhibits much larger splitting values over the gas cap on the reservoir. This increase in splitting results from a decrease in the slow shear-wave velocity which senses both the fractures and the fracture-filling fluid. Using a new effective-medium model, it was possible to generate a splitting map for the reservoir that is corrected for this fluid effect. Secondly, an anomaly was encountered on the shear-wave data directly above the reservoir. The thick Fiqa shale overburden exhibits a low shear-wave velocity anomaly that is accompanied by higher shear reflectivity and lower frequency content. No such effects are evident in the conventional P-wave data. This feature is interpreted as a gas chimney above the reservoir, a conclusion supported by both effective-medium modelling and the geology.
With this new effective-medium model, we show that introduction of gas into vertically fractured rock appears to decrease the velocity of shear waves (S2), polarized perpendicular to the fracture orientation, whilst leaving the vertical compressional-wave velocity largely unaffected. This conclusion has direct implications for seismic methods in exploration, appraisal and development of fractured reservoirs and suggests that here we should be utilizing S-wave data, as well as the conventional P-wave data, as a direct hydrocarbon indicator.  相似文献   
2.
This paper describes a large-scale reservoir characterization experiment carried out in Oman in 1991 which comprised the acquisition, processing and interpretation of a 28.4 km2 3D multicomponent seismic experiment over the Natih field. The objective of the survey was to obtain information on the fracture network present in the Natih carbonates from shear-wave anisotropy. Shear-wave anisotropy in excess of 20% time splitting was encountered over a large part of the survey. The seismic results are confirmed by geological and well data but provide additional qualitative information on fracturing where this was not available before. Regions of stronger and weaker shear-wave anisotropy appear to be fault-bounded. The average well flow rates (which are fracture-dominated) within such blocks correlate with the average anisotropy of the blocks. The further observation that the anisotropy is largest in the fracture gas cap of the reservoir suggests that shear waves can provide a direct hydrocarbon indicator for fractured rock.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号