首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   3篇
海洋学   1篇
  2020年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Soil shear wave velocity has been recognized as a governing parameter in the assessment of the seismic response of slopes. The spatial variability of soil shear wave velocity can influence the seismic response of sliding mass and seismic displacements. However, most analyses of sliding mass response have been carried out by deterministic models. This paper stochastically investigates the effect of random heterogeneity of shear wave velocity of soil on the dynamic response of sliding mass using the correlation matrix decomposition method and Monte Carlo simulation(MCS). The software FLAC 7.0 along with a Matlab code has been utilized for this purpose. The influence of statistical parameters on the seismic response of sliding mass and seismic displacements in earth slopes with different inclinations and stiffnesses subject to various earthquake shakings was investigated. The results indicated that, in general, the random heterogeneity of soil shear modulus can have a notable impact on the sliding mass response and that neglecting this phenomenon could lead to underestimation of sliding deformations.  相似文献   
2.
3.
The East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas. Residual oil spills stranded on coastal beaches usually end up as tar-balls. Elucidating the sources of tar-balls using a molecular marker approach is essential in assessing environmental impacts and perhaps settling legal liabilities for affected parties. This study utilizes a multimodal molecular marker approach through the use of diagnostic ratios of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) to determine the source, distribution and weathering of tar-balls. Hopane ratios (e.g., C29/C30, and summation C31-C35/C30 ratios) were used to identify the sources of tar-balls. The weathering effects were distinguished by using alkanes, namely the unresolved complex mixture (UCM) and low molecular weight/high molecular weight (L/H) ratios. Similarly, PAHs were also used for the determination of weathering processes undergone by the tar-balls. This multimodal molecular marker gave a very strong indication of the sources of tar-balls in this study. For example, 16 out of 17 samples originated from South East Asian Crude Oil (SEACO) with one sample from Merang, Terengganu originating from North Sea Oil (Troll). The TRME-2 sample may have come from a supertanker's ballast water discharge. The second possibility is that the tar-ball may have been transported via oceanographic currents. All 'weathered' sample characterizations were based on the presence of UCM and other ratios. The multimodal molecular marker approach applied in this study has enabled us to partially understand the transport behavior of tar-balls in the marine environment and has revealed insights into the weathering process of tar-balls.  相似文献   
4.
The present paper proposes the application of multiwalled carbon nanotubes (MWCNTs) as a solid adsorbent for selective separation/preconcentration of silver(I) in water samples prior to flame atomic absorption spectrometry. The procedure is based on the solid phase extraction of Ag(I)–2‐mercaptobenzothiazole chelate on MWCNTs. The elution step is carried out with 5 mL of 2 mol L?1 HNO3 in acetone solution at a flow rate of 1.0 mL min?1. The influences of the various analytical parameters including pH of the solution, eluent type, sample volume, flow rates of eluent, matrix ions were investigated for optimization of the presented procedure. Tests of addition/recovery for analyte ion in real samples were performed with satisfactory results. Preconcentration factor and limit of detection for Ag(I) were 160 and 0.21 µg L?1, respectively. The synthesized MWCNT exhibited excellent stability in eluent solution and its adsorption capacity was 5.4 mg of silver per gram of sorbent. The proposed method was successfully applied to trace silver determination in a variety of environmental water samples.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号