首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
地球物理   4篇
地质学   2篇
海洋学   1篇
自然地理   1篇
  2020年   1篇
  2019年   3篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Natural Hazards - The article was published with errors.  相似文献   
2.
Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161 km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes).  相似文献   
3.

Parameterization of wave runup is of paramount importance for an assessment of coastal hazards. Parametric models employ wave (e.g., Hs and Lp) and beach (i.e., β) parameters to estimate extreme runup (e.g., R2%). Thus, recent studies have been devoted to improving such parameterizations by including additional information regarding wave forcing or beach morphology features. However, the effects of intra-wave dynamics, related to the random nature of the wave transformation process, on runup statistics have not been incorporated. This work employs a phase- and depth- resolving model, based on the Reynolds-averaged Navier-Stokes equations, to investigate different sources of variability associated with runup on planar beaches. The numerical model is validated with laboratory runup data. Subsequently, the role of both aleatory uncertainty and other known sources of runup variability (i.e., frequency spreading and bed roughness) is investigated. Model results show that aleatory uncertainty can be more important than the contributions from other sources of variability such as the bed roughness and frequency spreading. Ensemble results are employed to develop a new parametric model which uses the Hunt (J Waterw Port Coastal Ocean Eng 85:123–152, 1959) scaling parameter \(\beta \left (H_{s}L_{p}\right )^{1/2}\).

  相似文献   
4.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
Near‐bed, highly resolved velocity profiles were measured in the lower 0.03 m of the water column using acoustic Doppler profiling velocimeters in narrow tidal channels in a salt marsh. The bed shear stress was estimated from the velocity profiles using three methods: the log‐law, Reynolds stress, and shear stress derived from the turbulent kinetic energy (TKE). Bed shear stresses were largest during ebbing tide, while near‐bed velocities were larger during flooding tide. The Reynolds stress and TKE method gave similar results, while the log‐law method resulted in smaller bed shear stress values during ebbing tide. Shear stresses and turbulent kinetic energy followed a similar trend with the largest peaks during ebbing tide. The maximum turbulent kinetic energy was on the order of 1 × 10? 2 m2/s2. The fluid shear stress during flooding tide was approximately 30% of the fluid shear stress during ebbing tide. The maximum TKE‐derived shear stress was 0.7 N/m2 and 2.7 N/m2 during flooding and ebbing tide, respectively, and occurred around 0.02 m above the bed. Turbulence dissipation was estimated using the frequency spectrum and structure function methods. Turbulence dissipation estimates from both methods were maximum near the bed (~0.01 m). Both the structure function and the frequency spectrum methods resulted in maximum dissipation estimates on the order of 4 × 10? 3 m2/s3. Turbulence production exceeded turbulence dissipation at every phase of the tide, suggesting that advection and vertical diffusion are not negligible. However, turbulence production and dissipation were within a factor of 2 for 77% of the estimates. The turbulence production and dissipation decreased quickly away from the bed, suggesting that measurements higher in the water column cannot be translated directly to turbulence production and dissipation estimates near the bed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
7.
8.
Natural Hazards - More than 2000 surf zone injury (SZI) events, including 196 spinal injuries and 6 fatalities, were recorded at the five most populated beaches along the 25 miles of...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号