首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   4篇
天文学   7篇
  2023年   1篇
  2018年   4篇
  2013年   1篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 473 毫秒
1.
The kinematics of satellite galaxies reflect the masses of the extended dark matter haloes in which they orbit, and thus shed light on the mass–luminosity relation (MLR) of their corresponding central galaxies. In this paper, we select a large sample of centrals and satellites from the Sloan Digital Sky Survey and measure the kinematics (velocity dispersions) of the satellite galaxies as a function of the r -band luminosity of the central galaxies. Using the analytical framework presented in More, van den Bosch & Cacciato, we use these data to infer both the mean and the scatter of the MLR of central galaxies, carefully taking account of selection effects and biases introduced by the stacking procedure. As expected, brighter centrals on average reside in more massive haloes. In addition, we find that the scatter in halo masses for centrals of a given luminosity,  σlog  M   , also increases with increasing luminosity. As we demonstrate, this is consistent with  σlog  L   , which reflects the scatter in the conditional probability function   P ( L c| M )  , being independent of halo mass. Our analysis of the satellite kinematics yields  σlog  L = 0.16  ±  0.04  , in excellent agreement with constraints from clustering and group catalogues, and with predictions from a semi-analytical model of galaxy formation. We thus conclude that the amount of stochasticity in galaxy formation, which is characterized by  σlog  L   , is well constrained, independent of halo mass and in a good agreement with current models of galaxy formation.  相似文献   
2.
Formation of the fragments of the wall-rock during dyking is one of the important manifestations of instantaneous magmatic events. This process is well documented at shallower depths of Earth’s crust but not at deeper levels. In this paper the in situ xenoliths of host rock nepheline syenite within a micro-shonkinite dyke emplaced at mid-crustal depths is described and the fractal theory applied to evaluate origin of the xenoliths. The nepheline syenite xenoliths are angular to oval shaped and sub-millimetre to ~50 cm long. The xenoliths are matrix supported with clasts and matrix being in equal proportions. Partly detached wall-rock fragments indicate incipient xenolith formation, which suggested that the model fragmentation processes is solely due to dyke emplacement. Fractal analytical techniques including clast size distribution, boundary roughness fractal dimension and clast circularity was carried out. The fractal data suggests that hydraulic (tensile) fracturing is the main process of host rock brecciation. However, the clast size and shape are further affected by postfragmentation processes including shear and thermal fracturing, and chemical erosion. The study demonstrates that dyking in an isotropic medium produces fractal size distributions of host rock xenoliths; however, post-fragmentation processes modify original fractal size distributions.  相似文献   
3.
Fossil leaf impressions and pollen grains comparable to modern Sloanea sp. of Elaeocarpaceae collected from the middle part of the Siwalik sediments (Geabdat Sandstone Formation; Pliocene) in Darjeeling foothills of eastern Himalaya are reported in the present communication. On the basis of macro morphological features, leaf remains are described as a new species Sloanea siwalika sp. nov. This is the first authentic record of the occurrence of leaf and pollen grains comparable to the genus Sloanea L. from the Cenozoic sediments of India and Asia as well. The recovery of this species and other earlier-described evergreen taxa from the same formation, suggests the existence of a tropical, warm and humid climatic conditions during the depositional period. The present study further suggests that after Pliocene the taxon might have shifted from Darjeeling Himalayan region to the adjoining southeast Asian land masses, due to possible climate change caused by post-Pliocene orogenic movement of the Himalaya.  相似文献   
4.
5.
Satellite kinematics can be used to probe the masses of dark matter haloes of central galaxies. In order to measure the kinematics with sufficient signal-to-noise ratio, one uses the satellite galaxies of a large number of central galaxies stacked according to similar properties (e.g. luminosity). However, in general, the relation between the luminosity of a central galaxy and the mass of its host halo will have non-zero scatter. Consequently, this stacking results in combining the kinematics of satellite galaxies in haloes of different masses, which complicates the interpretation of the data. In this paper, we present an analytical framework to model satellite kinematics, properly accounting for this scatter and for various selection effects. We show that in the presence of scatter in the halo mass–luminosity relation, the commonly used velocity dispersion of satellite galaxies can not be used to infer a unique halo mass–luminosity relation. In particular, we demonstrate that there is a degeneracy between the mean and the scatter of the halo mass–luminosity relation. We present a new technique that can break this degeneracy, and which involves measuring the velocity dispersions using two different weighting schemes: host weighting (each central galaxy gets the same weight) and satellite weighting (each central galaxy gets a weight proportional to its number of satellites). The ratio between the velocity dispersions obtained using these two weighting schemes is sensitive to the scatter in the halo mass–luminosity relation, and can thus be used to infer a unique relation between light and mass from the kinematics of satellite galaxies.  相似文献   
6.
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy–galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. for the same samples of galaxies. The observational results are well reproduced in a Λ cold dark matter (ΛCDM) model based on the Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr data, but a ΛCDM model with higher σ8, such as the one based on the WMAP 1-yr data, significantly overpredicts the galaxy–galaxy lensing signal. We model, separately, the contributions to the galaxy–galaxy lensing signals from different galaxies: central versus satellite, early type versus late type and galaxies in haloes of different masses. We also examine how the predicted galaxy–galaxy lensing signal depends on the shape, density profile and the location of the central galaxy with respect to its host halo.  相似文献   
7.
Rice crop occupies an important aspect of food security and also contributes to global warming via GHGs emission. Characterizing rice crop using spatial technologies holds the key for addressing issues of global warming and food security as different rice ecosystems respond differently to the changed climatic conditions. Remote sensing has become an important tool for assessing seasonal vegetation dynamics at regional and global scale. Bangladesh is one of the major rice growing countries in South Asia. In present study we have used remote sensing data along with GIS and ancillary map inputs in combination to derive seasonal rice maps, rice phenology and rice cultural types of Bangladesh. The SPOT VGT S10 NDVI data spanning Aus, Aman and Boro crop season (1st May 2008 to 30th April 2009) were used, first for generating the non-agriculture mask through ISODATA clustering and then to generate seasonal rice maps during second classification. The spectral rice profiles were modelled and phenological parameters were derived. NDVI growth profiles were modelled and crop calendar was derived. To segregate the rice cultural types of Bangladesh into IPCC rice categories, we used elevation, irrigated area, interpolated rainfall maps and flood map through logical modelling in GIS. The results indicated that the remote sensing derived rice area was 9.99 million ha as against the reported area of 11.28 million ha. The wet and dry seasons accounted for 64% and 36 % of the rice area, respectively. The flood prone, drought prone and deep water categories account for 7.5%, 5.56% and 2.03%, respectively. The novelty of current findings lies in the spatial outcome in form of seasonal and rice cultural type maps of Bangladesh which are helpful for variety of applications.  相似文献   
8.
Hexavalent chromium Cr(VI) has emerged as a contaminant of prime concern for the environmentalists because of its improper disposal by tannery, dye, and electroplating industries. Adsorption is the most exploited method for its removal from industrial wastewater because of its high removal efficiency even at low Cr(VI) concentration, minimal sludge, and ease of regeneration. In recent years, several adsorbents of biological origin such as plants, algae, fungi, and bacteria have been explored for Cr(VI) remediation. This review comprehends the recent studies involving usage of biopolymer-based nano-composites with respect to its adsorption mechanisms, adsorption capacities, isotherms, and kinetics. The conventional abiotic and biotic techniques for removal of Cr(VI) are also discussed with a comparative insight of their adsorption capacity and removal efficiency. Nano-biocomposites integrate the functional properties of both nanoparticles and biopolymers, which make them efficient biosorbents. Nano-biocomposites offer a large surface area, reduced particle loss, minimal particle agglomeration on the surface, and high stability. Common kinetic models among the nano-biocomposites,  and various equilibrium models are also analyzed to understand the mode of adsorption and associated factors. These materials are mostly found to follow monolayer adsorption with ion exchange, electrostatic interaction, and surface complexation as major players in the process.  相似文献   
9.
10.
MG 2016+112 is a quadruply imaged lens system with two complete images A and B and a pair of merging partial images in region C as seen in the radio. The merging images are found to violate the expected mirror symmetry. This indicates an astrometric anomaly which could only be of gravitational origin and could arise due to substructure in the environment or line of sight of the lens galaxy. We present new high-resolution multifrequency very long baseline interferometry (VLBI) observations at 1.7, 5 and 8.4 GHz. Three new components are detected in the new VLBI imaging of both the lensed images A and B. The expected opposite parity of the lensed images A and B was confirmed due to the detection of non-collinear components. Furthermore, the observed properties of the newly detected components are inconsistent with the predictions of previous mass models. We present new scenarios for the background quasar which are consistent with the new observations. We also investigate the role of the satellite galaxy situated at the same redshift as the main lensing galaxy. Our new mass models demonstrate quantitatively that the satellite galaxy is the primary cause of the astrometric anomaly found in region C. The detected satellite is consistent with the abundance of subhaloes expected in the halo from cold dark matter (CDM) simulations. However, the fraction of the total halo mass in the satellite as computed from lens modelling is found to be higher than that predicted by CDM simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号