首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   4篇
  国内免费   1篇
测绘学   10篇
大气科学   20篇
地球物理   51篇
地质学   100篇
海洋学   5篇
天文学   21篇
自然地理   6篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   18篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
  1980年   2篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1958年   4篇
  1957年   4篇
  1956年   3篇
  1955年   3篇
  1954年   2篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1949年   2篇
  1915年   1篇
排序方式: 共有213条查询结果,搜索用时 19 毫秒
1.
This study presents a review of published geological data, combined with original observations on the tectonics of the Simplon massif and the Lepontine gneiss dome in the Western Alps. New observations concern the geometry of the Oligocene Vanzone back fold, formed under amphibolite facies conditions, and of its root between Domodossola and Locarno, which is cut at an acute angle by the Miocene, epi- to anchizonal, dextral Centovalli strike-slip fault. The structures of the Simplon massif result from collision over 50 Ma between two plate boundaries with a different geometry: the underthrusted European plate and the Adriatic indenter. Detailed mapping and analysis of a complex structural interference pattern, combined with observations on the metamorphic grade of the superimposed structures and radiometric data, allow a kinematic model to be developed for this zone of oblique continental collision. The following main Alpine tectonic phases and structures may be distinguished:
1.  NW-directed nappe emplacement, starting in the Early Eocene (~50 Ma);
2.  W, SW and S-verging transverse folds;
3.  transpressional movements on the dextral Simplon ductile shear zone since ~32 Ma;
4.  formation of the Bergell – Vanzone backfolds and of the southern steep belt during the Oligocene, emplacement of the mantle derived 31–29 Ma Bergell and Biella granodiorites and porphyritic andesites as well as intrusions of 29–25 Ma crustal aplites and pegmatites;
5.  formation of the dextral discrete Rhone-Simplon line and the Centovalli line during the Miocene, accompanied by the pull-apart development of the Lepontine gneiss dome – Dent Blanche (Valpelline) depression.
It is suggested that movements of shortening in fan shaped NW, W and SW directions accompanied the more regular NW- to WNW-directed displacement of the Adriatic indenter during continental collision.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Editorial Handling: Stefan Bucher  相似文献   
2.
Geochemical data are presented for the meta-igneous, mafic-ultramafic complex near Finero. This complex is in contact with a phlogopite-bearing mantle peridotite and is subdivided into the Internal Gabbro unit, the Amphibole Peridotite unit, and the External Gabbro unit. The Internal Gabbro and the Amphibole Peridotite units consist of coarse-grained, chemically heterogeneous cumulates, whereas the External Gabbro unit is generally massive, chemically more uniform and approximately representative of the residual melt with MgO contents between 6.6 and 9.1% and Mg numbers between 38 and 58. Both whole-rock and mineral contents of Ni and Cr are significantly higher (at similar Mg numbers) in the Amphibole Peridotite unit than in the Internal Gabbro unit. The most straightforward interpretation of this is that the Amphibole Peridotite unit accumulated after the influx of fresh mafic (or ultramafic) magma into the magma chamber. Major-element chemical trends are continuous from the Amphibole Peridotite unit to the External Gabbro unit and are consistent with closed-system fractionation with no further addition of magma or contamination by wall or roof rock assimilation. In the External Gabbro unit, total FeO and TiO2 contents are strongly correlated with each other (and with P2O5 and Zr) and reach values as high as 19 and 4%, respectively, indicating an advanced degree of crystal fractionation along a tholeftic trend. The External Gabbro samples have generally smooth normalized trace element patterns, which are consistent with being representative of a liquid composition. The residual nature of the External Gabbro magma is also indicated by negative Eu and Sr anomalies, clear evidence for prior feldspar fractionation. REE patterns are otherwise indistinguishable from N-type MORB, but Th and U are significantly more depleted than in MORB. This Th and U depletion is similar to that found in olivine basalts and picrites on Iceland and Hawaii; its origin is not well understood. No evidence is seen for any assimilation of crystal material, in sharp contrast with the situation of the igneous complex in Val Sesia near Balmuccia, where the magma composition is dominated by assimilation of crust. We suggest that the heat provided by at most two injections of magma near Finero was insufficient to induce crystal anatexis, in contrast with the excess heat supplied by multiple magma injections at Balmuccia.  相似文献   
3.
The use of Synthetic Aperture Radar interferometry (InSAR) in northern Chile, one of the most seismically active regions in the world, is of great importance. InSAR enables geodesists not only to accurately measure Earth’s motions but also to improve fault slip map resolution and our knowledge of the time evolution of the earthquake cycle processes. Fault slip mapping is critical to better understand the mechanical behavior of seismogenic zones and has fundamental implications for assessing hazards associated with megathrust earthquakes. However, numerous sources of errors can significantly affect the accuracy of the geophysical parameters deduced by InSAR. Among them, atmospheric phase delays caused by changes in the distribution of water vapor can lead to biased model parameter estimates and/or to difficulties in interpreting deformation events captured with InSAR. The hyper-arid climate of northern Chile might suggest that differential delays are of a minor importance for the application of InSAR techniques. Based on GPS, Moderate Resolution Imaging Spectroradiometer (MODIS) data our analysis shows that differential phase delays have typical amplitudes of about 20 mm and may exceptionally exceed 100 mm and then may impact the inferences of fault slip for even a Mw 8 earthquakes at 10% level. In this work, procedures for mitigating atmospheric effects in InSAR data using simultaneous MODIS time series are evaluated. We show that atmospheric filtering combined with stacking methods are particularly well suited to minimize atmospheric contamination in InSAR imaging and significantly reduce the impact of atmospheric delay on the determination of fundamental earthquake parameters.  相似文献   
4.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   
5.
6.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   
7.
Late Palaeogene syn-tectonic volcanic products have been found in the Northern Alpine foreland basin and in the South Alpine hemipelagic basin. The source of abundant volcanic fragments is still in debate. We analyzed the geochronology and geochemistry of detrital zircons, and evaluated their temporal and genetic relationships with potential volcanic sources. The study shows that the detrital zircon U–Pb age patterns have two major age groups: a dominance (ca. 90%) of pre-Alpine zircons was found, as commonly observed in other Alpine flysch formations. These zircons apparently derived from erosion of the early Alpine nappe stack in South Alpine and Austroalpine units. Furthermore, a few Neo-Alpine zircons (ca. 10%) have ages ranging from Late Eocene to Early Oligocene (~ 41–29 Ma). Both source materials were mixed during long riverine transport to the basin margins before being re-deposited by gravity flows. These Palaeogene ages match with the activity of Peri-Adriatic magmatism, including the Biella volcanic suite as well as the Northern Adamello and Bergell intrusions. The values of REE and 176Hf/177Hf(t) ratios of the Alpine detrital zircons are in line with the magmatic signatures. We observe an in time and space variable supply of syn-sedimentary zircons. From late Middle Eocene to Late Eocene, basin influx into the South Alpine and Glarus (A) basins from the Northern Adamello source is documented. At about 34 Ma, a complete reorganisation is recorded by (1) input of Bergell sources into the later Glarus (B) basin, and (2) the coeval volcaniclastic supply of the Haute-Savoie basin from the Biella magmatic system. The Adamello source vanished in the foreland basin. The marked modification of the basin sources at ~ 34 Ma is interpreted to be initiated by a northwestern shift of the early Alpine drainage divide into the position of the modern Insubric Line.  相似文献   
8.
The lower Oligocene evaporite sequence of the Mulhouse Basin (France) contains organic matter-rich marl deposits. These marls display an overall cyclic variation of sedimentation rate, organic carbon content, hydrogen index and selected molecular parameters over a 30 m thick stratigraphic interval. The integration of all sedimentological and geochemical parameters has allowed the reconstruction and characterization of the paleoenvironment of deposition. The marls were deposited in a perennial lake that was at times connected to the sea. Two organic facies end members could be assigned to a lake stage with a marine connection and a lake stage that received dominantly continental water input. The overall stratigraphic variation in the organic matter content is interpreted to reflect the adaptation of the Oligocene flora to the changing paleoclimate and environmental conditions.  相似文献   
9.
A suite of marl samples from the evaporitic series of the Mulhouse basin (France; Lower Oligocene) was studied for its biomarker content, in particular its polar constituents. Novel series of 3-carboxyalkyl steranes and 15-oxo triaromatic ketones were identified by synthesis. The 3-carboxyalkyl steranes probably originate from highly polar precursors yet unreported in living organisms. Our data suggest that micro-algae could be the major source of these compounds which seem to be indicators of high algal input rather than characteristic of evaporitic environments. The 15-oxo triaromatic ketones could be oxidation products of triaromatic steroid hydrocarbons formed during diagenesis, although their formation during work-up procedure could not be excluded.  相似文献   
10.
The present discussion about magmatic processes develops out of granite tectonics which goes back toHans Cloos (1922). Kinematics and dynamics of the flow within an uprising magma result from archimedean buoyancy. This force equilibrates all disequilibria of the terrestrial density distribution caused by thermal actions. Magmatic uprising, however, is not a strictly archimedean process, but suffers from distortion, deformation, deviation, and self-rotations caused by secondary forces which originate from the rotation of the earth. Simultaneous step wise crystallization of the magma leads to gravitational differentiation which is accompanied by lateral differentiation. Thus, in the end the magma solidifies asymmetrically, fractionated, and exhibiting an azimuthal tendency. These features may be expressed either by an individual magmatic body, or by a whole petrographic province. Apparently, no magma is able to rise homogeneously and vertically upwards. The entire process of magmatic uprising as well as the resulting inner fabric and outer shape appear to be controlled by the laws of Archimedes, Coriolis, and Cloos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号