首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
自然地理   1篇
  2010年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The Dead Sea is a terminal lake of one of the largest hydrological systems in the Levant and may thus be viewed as a large rain gauge for the region. Variations of its level are indicative of the climate variations in the region. Here, we present the decadal- to centennial-resolution Holocene lake-level curve of the Dead Sea. Then we determine the regional hydroclimatology that affected level variations. To achieve this goal we compare modern natural lake-level variations and instrumental rainfall records and quantify the hydrology relative to lake-level rise, fall, or stability. To quantify that relationship under natural conditions, rainfall data pre-dating the artificial Dead Sea level drop since the 1960s are used. In this respect, Jerusalem station offers the longest uninterrupted pre-1960s rainfall record and Jerusalem rains serve as an adequate proxy for the Dead Sea headwaters rainfall. Principal component analysis indicates that temporal variations of annual precipitation in all stations in Israel north of the current 200 mm yr−1 average isohyet during 1940–1990 are largely synchronous and in phase (70% of the total variance explained by PC1). This station also represents well northern Jordan and the area all the way to Beirut, Lebanon, especially during extreme drought and wet spells. We (a) determine the modern, and propose the past regional hydrology and Eastern Mediterranean (EM) climatology that affected the severity and length of droughts/wet spells associated with multiyear episodes of Dead Sea level falls/rises and (b) determine that EM cyclone tracks were different in average number and latitude in wet and dry years in Jerusalem. The mean composite sea level pressure and 500-mb height anomalies indicate that the potential causes for wet and dry episodes span the entire EM and are rooted in the larger-scale northern hemisphere atmospheric circulation. We also identified remarkably close association (within radiocarbon resolution) between climatic changes in the Levant, reflected by level changes, and culture shifts in this region.  相似文献   
2.
Geochemical analysis of 210Pb-dated sediment cores from Otisco Lake (New York) combined with analysis of recent land cover change in the watershed revealed the history of land use change, lake management, and industrial pollution since European settlement in the northeastern US. Clearance of forestland for agriculture characterized the early settlement era that was marked in the Otisco Lake sediments by a decline in organic carbon (OC) and OC:N ratios, which indicate a change in the sources of organic matter to the lake. Agricultural land use reached its greatest areal extent in the Otisco watershed around 1900, followed by field abandonment and reforestation over the last century. In the 1920s sediment accumulation rates began to increase coincident with residential development along the lake shore. Nitrogen and organic carbon, which are transported from the watershed, show increased fluxes to the lake in response to this change. Deposition of inorganic carbon increased markedly over a short period from the 1940s to the 1980s, which is consistent with enhanced mobilization of watershed calcium by increased acidic deposition, followed by alkalinization of the lake waters and calcite precipitation. An increase in copper content in the sediments reflects application, since 1942, of the algicide copper sulfate to the lake waters to control algal blooms. This CuSO4 marker confirmed the accuracy of the 210Pb chronology. Atmospheric mercury (Hg) fluxes to the lake were affected by increased sediment transport from the watershed. The maximum Hg peak in the sediment record, however, was dated to the early 1970s and coincides with maximum Hg emissions to the atmosphere in the Great Lakes region.  相似文献   
3.
A high-resolution Holocene seismic history of the Dead Sea Transform (DST) is established from laminated sedimentary cores recovered at the shores of the Dead Sea. Radiocarbon dating and annual laminae counting yield excellent agreement between disturbed sedimentary structures (identified as seismites) and the historical earthquake record: All recent and historical strong events of the area were identified, including the major earthquakes of A.D. 1927, 1837, 1212, 1033, 749, and 31 B.C. The total of 53 seismites recognized along the entire Holocene profile indicate varying recurrence intervals of seismic activity between a few and 1000 years, with a conspicuous minimum rate at 2100-31 B.C. and a noticeable maximum during the past six to eight centuries. Most of the epicenters of the correlated earthquakes are situated very close to the Dead Sea (within 150 km) or up to 400 km north of it along the DST. Between 1000 B.C. and A.D. 1063, and from A.D. 1600 to recent time the epicenters are all located on the northern segment of the DST, whereas prior to 1000 B.C. and between A.D. 1000 and 1600 they appear to scatter along several segments of the DST. We establish how the local intensity exerts a control on the formation of seismites. At historically estimated intensities greater than VII, all well documented earthquakes are correlated, whereas at intensities smaller than VI none are matching.The periods with enhanced earthquake rate along the DST correlate with those along the North Anatolian Fault as opposed to the intervening East Anatolian Fault. This may indicate some elastic coupling on plate-boundary scale that may also underlie escape and extrusion tectonics, typical of continental collision.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号