首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2010年   1篇
  2009年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
We present new thermochronometric analyses of 4 samples from the Western Klamath mountains in California and Oregon, together with a re-evaluation of available geological constraint from a thermo-tectonic perspective. Early Cretaceous cooling of basement samples is seen to reflect significant exhumation by normal faulting, linked to the Separation Episode during which the Klamah region was rifted away from the formerly contiguous Sierra Nevada block. Syn-faulting sedimentation and subsequent Early Cretaceous re-heating of samples establishes the former continuity of scattered Hornbrook Formation remnants as a significant sedimentary basin spanning the Klamath region, with local maximum thickness of at least 5 km. This basin experienced significant inversion during early Cordilleran development around 110–120 Ma, with further unrooting and almost complete eversion in the Late Cretaceous, associated with Laramide uplift of the region.  相似文献   
2.
Apatite fission-track ages of 168-83 Ma for 39 samples of Proterozoic crystalline rocks, three samples of Cambrian Potsdam sandstone, and one Cretaceous lamprophyre dike from the Adirondack Mountains in New York State indicate that unroofing in this region occurred from Late Jurassic through Early Cretaceous. Samples from the High Peaks section of the Adirondack massif yielded the oldest apatite fission-track ages (168-135 Ma), indicating that it was exhumed first. Unroofing along the northern, northwestern, and southwestern margins of the Adirondacks began slightly later, as shown by younger apatite fission-track ages (146-114 Ma) determined for these rocks. This delay in exhumation may have resulted from burial of the peripheral regions by sediment shed from the High Peaks. Apatite fission-track ages for samples from the southeastern Adirondacks are distinctly younger (112-83 Ma) than those determined for the rest of the Adirondack region. These younger apatite fission-track ages are from a section of the Adirondacks dissected by shear zones and post-Ordovician north-northeast-trending normal faults. Differential unroofing may have been accommodated by reactivation of the faults in a reverse sense of motion with maximum compressive stress, sigma1, oriented west-northwest. A change in the orientation of the post-Early Cretaceous paleostress field is supported by a change in the trend of Cretaceous lamprophyre dikes from east-west to west-northwest.  相似文献   
3.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   
4.
根据对东昆仑地区东段哈拉郭勒—哈图一带不同高度基岩的系列锆石裂变径迹年龄分析,结合磷灰石裂变径迹年龄分析和中酸性侵入岩角闪石压力计分析揭示了东昆仑东段中生代的岩石隆升剥露冷却历史.巴隆哈图一带中酸性侵入岩角闪石压力计分析结果反映晚海西—印支期以来的总体剥露幅度约8~9km,早二叠世至晚三叠世初剥蚀作用极为缓慢,大约为20~40m/Ma.不同高程样品的锆石裂变径迹年龄分析结果揭示了东昆仑地区东段在中晚侏罗世处于缓慢的岩石隆升剥露阶段,其中中侏罗世相对较快,抬升速率77~88m/Ma,晚侏罗世相对较慢,抬升速率小于37m/Ma,且呈减慢趋势,这种减慢趋势反映了早中侏罗世之交强构造抬升期后的逐渐衰退.锆石裂变径迹—磷灰石裂变径迹年龄分析结果反映了中侏罗世以来的剥蚀速率一般不超过55m/Ma,岩石的剥蚀速率与岩石的抬升速率基本为同一量级,中侏罗世—白垩纪剥蚀作用与岩石抬升作用基本处于平衡状态。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号