首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
大气科学   3篇
地球物理   3篇
海洋学   8篇
自然地理   1篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有15条查询结果,搜索用时 220 毫秒
1.
The south-flowing waters of the Kamchatka and Oyashio Currents and west-flowing waters of the Alaskan Stream are key components of the western sub-Arctic Pacific circulation. We use CTD data, Argo buoys, WOCE surface drifters, and satellite-derived sea-level observations to investigate the structure and interannual changes in this system that arise from interactions among anticyclonic eddies and the mean flow. Variability in the temperature of the upstream Oyashio and Kamchatka Currents is evident by warming in mesothermal layer in 1994–2005 compared to 1990–1991. A major fraction of the water in these currents is derived directly from the Alaskan Stream. The stream also sheds large anticyclonic (Aleutian) eddies, averaging approximately 300 km in diameter with a volume transport significant in comparison with that of the Kamchatka Current itself. These eddies enclose pools of relatively warm and saline water whose temperature is typically 4 °C warmer and salinity is 0.4 greater than that of cold-core Kamchatka eddies in the same density range. Aleutian eddies drift at approximately 1.2 km d−1 and retain their distinctive warm and salty characteristics for at least 2 years. Selected westward pathways during 1990–2004 are identified. If the shorter northern route is followed, Aleutian eddies remain close to the stream and persist sufficiently long to carry warm and saline water directly to the Kamchatka Current. This was observed during 1994–1997 with substantial warming of the waters in the Kamchatka Current and upstream Oyashio. If the eddies take a more southern route they detach from the stream but can still contribute significant quantities of warm and saline water to the upstream Oyashio, as in 2004–2005. However, the eddies following this southern route may dissipate before reaching the western boundary current region.  相似文献   
2.
Considerable variations in intermediate water characteristics were found in the upper Oyashio based on the oceanographic data from 1953 to 2007. The long-term temperature trend at the 26.75σ? isopycnal is 0.03°C/year. This temperature trend is considerably higher than that determined earlier for the Sea of Okhotsk intermediate water and much higher than the World Ocean temperature trend. The westward transport of warm and salty water of the Alaskan Stream is most likely to cause the changes in the Kamchatka Current and upper Oyashio. It is established that Aleutian mesoscale eddies move westward from the location of their formation south of the Blizhniy Strait and transport warm water (3.8–4.2°C) in their core (100–600 m, ~26.75σ?)). As the trajectory of eddies is quite stable, the westward flow of warm and salty intermediate waters considerably influences the upper Oyashio characteristics.  相似文献   
3.
New oceanographic observations are used for studying the Kamchatka Current and the Alaskan Stream and its Aleutian eddies in 1990–2017. The Aleutian eddies are mesoscale anticyclonic eddies that are formed within the Alaskan Stream southward of the Aleutian Islands be tween 170° and 180° E and are moving to the southwest. The rapid freshening of the upper layer and the increase in tem-perature and salinity in the Kamchatka Current halocline are detected. In the upper layer of the Kamchatka Current, salinity decreased by 0.2 psu per 27 years. The most rapid variations in salinity and temperature have been observed in recent years. In the halocline (at the isopycnic of 26.75σθ) temperature rose by 1.4°C and salinity in creased by 0.15 psu. The maximum temperature of the warm intermediate layer in the Kamchatka Current exceeded 4°C for the first time. The most likely reason for the temperature and salinity increase in the halocline is the transport of warm and salt water by the Aleu-tian eddies.  相似文献   
4.
Here we examine the consequences of strong tidal mixing on spatial and temporal distributions of biota and sea ice above Kashevarov Bank, Sea of Okhotsk, using data from field surveys (hydrography, pressure gauge and current meter moorings, and bio-acoustic soundings) and remote sensing (NOAA AVHRR). Fortnightly variations in the amplitude of diurnal tidal currents, primarily resulting from the K1–O1 interaction, are shown to dominate water motion over the bank. These currents (with maximum velocities 2 m s−1) create a sharp tidally-mixed front that separates well-mixed water above the bank from stratified water along its flanks. Such mixing draws water upward from the cold dichothermal layer (100–150 m) into the surface layer, and thus serves to ventilate the intermediate layers of the Sea of Okhotsk. In summer, fortnightly modulation of the tidal mixing creates temporal variations in water column stratification, a critical factor in the joint supply of nutrients and light required to sustain phytoplankton growth. As such, chlorophyll-a and oxygen values vary in response to the fortnightly cycle, and zooplankton likewise form dense aggregations within the tidally-mixed front in response to the phytoplankton production. It is further noted that the brood cycle of dominant zooplankton species on the bank matches the fortnightly modulation of the tidal currents. In winter, tidal mixing draws relatively warm water upward from mid-depth to maintain a polynya that cyclically opens and closes in response to fortnightly variation in vertical heat flux.  相似文献   
5.
The upper Oyashio intermediate water, one of the source waters for the Sea of Okhotsk intermediate water, is exhibiting a warming trend. The historical data show that the upper Oyashio temperature increased by 2.4°C during 1953 to 2007 at the potential density of 26.75 at depths of approximately 170 m. This rate of warming is much faster than that of the global ocean and the Sea of Okhotsk. The upper Oyashio warming is likely linked to the penetration of warm water of the Alaskan Stream westward. One mechanism of this warm Alaskan Stream water penetration is associated with large Aleutian eddies.  相似文献   
6.
Three ARGOS drift buoys were deployed in the Oyashio Current off the Kuril Islands near 45°N in fall, 1990, during a joint Russia/Canada study of western boundary current dynamics in the Subarctic Pacific Ocean. We here report on one buoy deployed within an anticyclonic warm core ring (WCR86B) which shows evidence of large amplitude inertial motions of near-diurnal frequency. During its first week within the ring the buoy drifted with a mean azimuthal current speed of 0.40–0.45 m s−1 and a radius of rotation of 15–20 km. However, superimposed on the mean rotation of the ring at this time were “loops” of near-diurnal period, radius 7–8 km and speeds exceeding 1 m s−1. During successive rotations the buoy spiraled outward, its mean period of rotation increased and the amplitude of the near-diurnal motions decreased. The large motions are explained by inertial wave trapping and amplification within the extremely large and weakly stratified eddy, wherein the negative vorticity of the eddy reduces the local inertial frequency to near-diurnal frequency. We here suggest that either tidal or wind forcing may generate these high-amplitude “loop” motions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
The objective of this research is to describe physical processes which are the cause of the recent variability of the Pacific western subarctic waters. Rapid thermohaline changes have occurred within the Oyashio and Kamchatka Current during the last decade. This variability has included a warming of the Kamchatka Current warm intermediate layer, but a cooling and freshening of the upper layer in the Oyashio and Sea of Okhotsk. The example presented here uses data obtained during the Canada/Russia INPOC and WOCE projects, as well as the new Russian studies with high resolution station grid.The possible physical mechanism that generated the upper layer freshening during the thermohaline transition is examined. Major components of the fresh water budget of the Okhotsk Sea are considered in order to describe the dramatic changes in salinity which have recently occurred in the Pacific subarctic. Significant changes in precipitation and other fresh water inputs are demonstrated. It is suggested that upper layer of the Oyashio and Kamchatka Current became cooler and fresher because of the export of cold, fresher waters from the Bering and Okhotsk seas. These waters from the marginal seas have cooled the bottom of the halocline, reducing evaporation and acting as a feedback that has kept the upper layer of the western subarctic boundary currents fresh. It is also shown that the outflow of the cold Sea of Okhotsk water has changed its path during this recent thermohaline transition.  相似文献   
8.
Tidal mixing at the Kashevarov Bank, Sea of Okhotsk, has been investigated using observations of bottom pressure and currents. The tides are dominated by the diurnal constituents. The water motion over the Bank is predominantly controlled by strong diurnal tidal currents, which bring cold water on the bank from its source, a cold intermediate layer. The temperature fluctuations are about 1.2°C at the southern edge of the bank. The maximum observed velocity is about 164 cm/s at the top of the bank. A superposition of the original diurnal constituents K1 and O1 reveals a strong fortnightly (Mf) variability of the current speed. Tidal-induced mixing is responsible for ventilation of the cold intermediate layer of the Sea of Okhotsk. Strong tidal mixing creates a well-defined tidally mixed front around the bank. This front acts like a barrier separating well-mixed water on the bank from stratified water on its flanks. There is a residual current of the order of 10 cm/s.  相似文献   
9.
The south-flowing waters of the Kamchatka and Oyashio currents are key components of the western subarctic Pacific gyre. The dissipation of tidal energy in shallow and coastal regions of these currents and the attendant mixing are the important processes that affect the upper layer temperature and salinity. Examples of the impact of tidal currents on water temperature and salinity are the persistent tide-driven mixing around the Kashevarov and Kruzenshtern banks. The Kruzenshtern Bank is a shallow submarine bank stretching along the eastern continental slope of the Kuril Islands with the minimum depth of 86 m. Surface drifters observations are used to determine the characteristics of tidal currents and the circulation over these banks. New software that allows more versatility in the harmonic analysis is used for drifter’s data. The two banks have similar features. The variations in current velocities are dominated by the diurnal signals. The K1 and O1 tidal ellipses over the banks are the largest and clockwise. The enhanced tidal currents suggest that the formation of cold and saline water in summer is due to mixing of water column over the banks with intermediate waters. Variations of tidal ellipses over the bank may explain the formation of polynya at the western end of the Kashevarov Bank. We found that the 18.6-year lunar nodal cycle is a significant characteristic of salinity variation at the temperature minimum in the eddies eastward of the Boussole Strait over the period 1990–2015.  相似文献   
10.
Ocean Dynamics - We used historical CTD observations and Argo data to obtain the characteristics of the Kamchatka Current halocline and its eddies. Kamchatka Current eddies have a cold low salinity...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号