首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2004年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Biotic structures and processes of the comparatively large and deep Lake Constance are dominated by pelagic water bodies. Therefore, much more attention has thus far been paid to the carbon cycle of pelagic habitats as compared to littoral areas. Nevertheless, there is also an ongoing debate on the importance of littoral areas for the carbon cycle in this lake. Although actually existing data are certainly insufficient for a realistic carbon budget, investigations made during the past decade provide at least a rough basis for a first evaluation. Accordingly, littoral areas appear to contribute overproportionally (related to surface) both to production as well as to degradation of organic carbon in the lake. However, the relative effect seems to be more pronounced for heterotrophic activities, mostly due to intense degradation processes in littoral sediments. Related to volume, littoral water bodies exhibited similar or slightly higher microbial activities as compared to epilimnetic pelagic water bodies, while microbial abundances and activities observed for littoral sediments exceeded the corresponding overlying water layers by one to three orders of magnitude. As was confirmed by in situ measurements microbial oxygen consumption frequently exceeded photosynthetic oxygen production in the investigated littoral sites. Moreover, significant qualitative differences between water and sediment were found for the degradation potentials of xenobiotics as was exemplified for phenol and nitrilo-triacetic acid (NTA). Overall, a buffer function at the landwater interface may be ascribed to littoral areas due to which the large pelagic water bodies of the lake may become additionally protected against loads of undesired organic substances due to high littoral degradation capacities.  相似文献   
2.
Rolinski  Susanne 《Ocean Dynamics》1999,51(10):141-146
Ocean Dynamics - The model study aims at the assessment of effects of mining activities of manganese nodules in the deep-sea. A Lagrangian transport model is applied on a global scale to estimate...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号