首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Inflated and compound pahoehoe flows have been identified within the central Paraná Continental Flood Basalts based upon their morphology, surface features, and internal zonation. Pahoehoe flow features have been studied at five localities in the western portion of Paraná State, Brazil: Ponte Queimada, Toledo, Rio Quitéria, Matelandia and Cascavel. We have interpreted the newly recognized flow features using concepts of Hawaiian pahoehoe formation and emplacement that have been previously applied to the Columbia River Basalt and Deccan Plateau. Surface features and/or internal structure typical from pahoehoe lavas are observed in all studied areas and features like inflation clefts, squeeze-ups, breakouts, and P-type lobes with two levels of pipe vesicles are indicative of inflation in these flows. The thinner, compound pahoehoe flows are predominantly composed of P-type lobes and probably emerged at the end of large inflated flows on shallow slopes. The presence of vesicular cores in the majority of compound lobes and the common occurrence of segregation structures suggests high water content in the pahoehoe lavas from the central PCFB. More volcanological studies are necessary to determinate the rheology of lavas and refine emplacement models.Editorial responsibility: C. Kilburn  相似文献   
2.
Pahoehoe flows interbedded with sediments have been identified in the superior portion of Paraná Continental Flood Basalts (PCFB), west portion of Paraná State, southern Brazil. In the study area peperites are generated by the interaction between lava flows and wet lacustrine sediments (silt and clay). Evidence that the sediments were unconsolidated or poorly consolidated and wet when the lava flowed over them includes vesiculated sediment, sediment in vesicles and fractures in lava flow and in juvenile clasts in the peperite and soft sediment deformation. Hydrodynamic mingling of lava and wet sediments (coarse mingling) is predominant and volcanic rocks and textures related to explosive phase of Molten Fuel Coolant Interaction (MFCI) are not observed in study area. Locally centimeter-sized areas display direct contact between ash-sized juvenile clasts and sediments formed by the collapse of a vapor film. The textures of fluidal peperites in the central PCFB indicate that the relevant factors that led to a coarse mingling between lava/sediment are (1) lava properties (low viscosity); (2) fine grained, unconsolidated or poorly consolidated wet sediment; and (3) a single episode of interaction between lava flows and sediment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号