首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   4篇
地球物理   2篇
天文学   1篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 17 毫秒
1
1.
Land surface interacts strongly with the atmosphere at all scales. This has a considerable impact on the hydrologic cycle and the climate. Therefore, in order to produce realistic simulations with climate models, their land-surface processes must be parameterized accurately. Because continental surfaces are usually extremely heterogeneous over the resolvable scales considered in these models, surface parameterizations based on the big leaf-big stoma approach (that assume grid-scale homogeneity) fail to represent the land-atmosphere interactions that occur at much smaller scales.A parameterization based on a statistical-dynamical approach is suggested here. With this approach, each surface grid element of the numerical model is divided into homogeneous land patches (i.e., patches with similar internal heterogeneity). Assuming that horizontal fluxes between the different patches within a grid element are small as compared to the vertical fluxes, patches of the same type located at different places in the grid can be regrouped into one subgrid surface class. Then, for each one of the subgrid surface classes, probability density functions (pdf) are used to characterize the variability of the different parameters of the soil-plant-atmosphere system. These pdf are combined with the equations of the model that describe the dynamic and the energy and mass conservations in the atmosphere.The potential application of this statistical-dynamical parameterization is illustrated by simulating (i) the development of an agricultural area in an arid region and (ii) the process of deforestation in a tropical region. Both cases emphasize the importance of land-atmosphere interactions on regional hydrologic processes and climate.  相似文献   
2.
Hurricanes can produce extreme nearshore waves and surge, but permanent gauging stations are often much sparser than is desired. This paper describes the rationale behind and outline for rapidly installed temporary coastal gauges, and presents results during Hurricane Gustav (2008). Within 48 h prior to landfall, twenty self-recording pressure gauges were deployed in depths of 1.4–23 m over more than 700 km of coastline, using helicopters to cover the large distances. Results showed a complex picture that was strongly dependent on location. East of the Mississippi Delta, open coast waves were large, and surge reached 3.8 m NAVD88 in marshes. West of the delta but near landfall, waves and surge were generally smaller as the river levees blocked flow from East to West. West of landfall, both waves and surge were very small and the most prominent feature was a water level drawdown that reached 1.5 m. Wave spectra varied strongly depending both on location and time from landfall.  相似文献   
3.
The Regional Atmospheric Modeling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES), developed and evaluated here, is used to explore the effects of three-dimensional canopy heterogeneity, at the individual tree scale, on the statistical properties of turbulence most pertinent to mass and momentum transfer. In RAFLES, the canopy interacts with air by exerting a drag force, by restricting the open volume and apertures available for flow (i.e. finite porosity), and by acting as a heterogeneous source of heat and moisture. The first and second statistical moments of the velocity and flux profiles computed by RAFLES are compared with turbulent velocity and scalar flux measurements collected during spring and winter days. The observations were made at a meteorological tower situated within a southern hardwood canopy at the Duke Forest site, near Durham, North Carolina, U.S.A. Each of the days analyzed is characterized by distinct regimes of atmospheric stability and canopy foliage distribution conditions. RAFLES results agreed with the 30-min averaged flow statistics profiles measured at this single tower. Following this intercomparison, two case studies are numerically considered representing end-members of foliage and midday atmospheric stability conditions: one representing the winter season with strong winds above a sparse canopy and a slightly unstable boundary layer; the other representing the spring season with a dense canopy, calm conditions, and a strongly convective boundary layer. In each case, results from the control canopy, simulating the observed heterogeneous canopy structure at the Duke Forest hardwood stand, are compared with a test case that also includes heterogeneity commensurate in scale to tree-fall gaps. The effects of such tree-scale canopy heterogeneity on the flow are explored at three levels pertinent to biosphere-atmosphere exchange. The first level (zero-dimensional) considers the effects of such heterogeneity on the common representation of the canopy via length scales such as the zero-plane displacement, the aerodynamic roughness length, the surface-layer depth, and the eddy-penetration depth. The second level (one-dimensional) considers the normalized horizontally-averaged profiles of the first and second moments of the flow to assess how tree-scale heterogeneities disturb the entire planar-averaged profiles from their canonical (and well-studied planar-homogeneous) values inside the canopy and in the surface layer. The third level (three-dimensional) considers the effects of such tree-scale heterogeneities on the spatial variability of the ejection-sweep cycle and its propagation to momentum and mass fluxes. From these comparisons, it is shown that such microscale heterogeneity leads to increased spatial correlations between attributes of the ejection-sweep cycle and measures of canopy heterogeneity, resulting in correlated spatial heterogeneity in fluxes. This heterogeneity persisted up to four times the mean height of the canopy (h c ) for some variables. Interestingly, this estimate is in agreement with the working definition of the thickness of the canopy roughness sublayer (2h c –5h c ).  相似文献   
4.
The contribution of livestock production to climate change is now widely acknowledged. Despite this, efforts to reduce meat consumption in light of climate change have been relatively limited. One potential avenue for encouraging consumption changes is via non-governmental organizations (NGOs). This study used a qualitative approach to understand how and to what extent environmental, food-focused, and animal protection NGOs in the U.S., Canada, and Sweden have worked to reduce or alter domestic meat consumption in light of climate change. While almost all of the NGOs examined had mentioned the issue on their websites, few had established formal campaigns to reduce meat consumption. Active public outreach was dominated by animal protection and food-focused groups, particularly in the U.S. and Canada. Animal protection organizations advocated for larger reductions in meat consumption than environmental groups. Few NGOs sought to promote national-level polices to reduce meat consumption. There is a continued need for public education campaigns with clear messages, particularly by environmental NGOs, as well as efforts to build support for policy measures that seek to reduce meat consumption.  相似文献   
5.
Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and,a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a parameterization of plant stomata applied on a field (or larger) scale, might not require inclusion of the complex relations found at the leaf scale between stomata and their microenvironment.  相似文献   
6.
The operating ranges of mesoscale numerical models and meteorological wind tunnels for sea- and land-breeze simulations are defined in this paper based on a review of the theoretical and practical limitations of these two approaches. Numerical-model operating ranges are limited by the choice of governing equations, the numerical methods used to solve the governing equations, the scales of the surface or atmospheric forcing and the atmospheric response, the specified grid resolution and domain size, and the available computer resources. Wind-tunnel operating ranges are limited by the dimensions of the simulated circulations and of the tunnel itself, the tunnel flow speed and turbulence characteristics, the temperature gradients within the tunnel, the lack of Coriolis force and moist processes, and the characteristics of the measurement instrumentation. The operating ranges of these two simulation methods are shown to overlap. In this common range, results of simulations from both approaches can be compared so as to strengthen the validity of the results and to help in the development and improvement of parameterizations of physical processes in numerical models. In addition, the coupling of meteorological wind tunnels and mesoscale numerical models offers a larger range of operating conditions than can be achieved by either approach alone. Together, they can be used in a hybrid form to predict atmospheric conditions at the scale of a few meters for complex terrain (e.g., buildings, hills, etc.) within larger mesoscale atmospheric flow regimes. In the case of sea and land breezes, the sea-land transition zone and coastal internal boundary layer can be studied using both approaches.  相似文献   
7.
Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch (Phys. Lett. A 134:451, 1989; Phys. Rev. B 68:184502, 2003a; Phys. Rev. B 71:184521, 2005a and Phys. Lett. A 345:453, 2005b) a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. For the sake of completeness, we have also included the analyses of instability at the normal-super-conducting interface due to excess accumulation of magnetic flux lines. The instability at the interface has also been studied numerically.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号