首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   1篇
地质学   8篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
International Journal of Earth Sciences - In the geologic record, the quartz c-axis patterns are widely adopted in the investigation of crystallographic preferred orientations (CPO) of naturally...  相似文献   
2.
In order to reveal any correlation between the preferred orientation of quartz and progressive intensity of strain, a suite of deformed leucogneiss collected within a ductile shear zone outcropping in Calabria (southern Italy) was investigated. Based on the microstructural approach and matrix-clast relationships, the method applied here may be useful for appraising the connection between deformation mechanisms of constituent minerals and bulk textural properties of naturally sheared rocks. Accordingly, quartz c-axis orientation patterns were determined by image-assisted analysis. Results revealed a correlation between finite strain and textural features: As strain increases, the matrix develops at the expense of the clast counterpart, which is instead progressively reduced in both size and amount.  相似文献   
3.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   
4.
An archaeometric study of the stone materials employed in the Late Baroque historical monuments of the ancient city centre of Catania was carried out. Lithological maps of a selection of monuments, transferred to a digital format, revealed that the stone materials are both magmatic and sedimentary rocks, the colours of which are matched in a peculiar type of bichromy. Particular attention focused on sedimentary rocks, which consist of various types of limestone quarried near the city of Syracuse (Hyblean Plateau, south-eastern Sicily). Carbonate rocks were characterised in terms of mineralogy, petrography and geochemistry, by studying rock samples from both monuments and historical extraction sites. Results showed that, although only one name was historically attributed to the above lithotypes (i.e. “Pietra di Siracusa‘’), they were quarried from many locations and, as they belong to various geological formations, they therefore exhibit great variety. In order to examine the durability of Hyblean limestones employed in works of cultural heritage interest, salt crystallisation tests were carried out according to standard procedure norms (UNI EN 12370 (1999) Determination of resistance to crystallisation of salts, 6p). Results are consistent with the forms of deterioration observed in the monuments, and highlight the close relationship between textural characteristics and damage. Our purpose is to provide a basic tool, which may be useful both for conserving monuments of cultural heritage and for their restoration.  相似文献   
5.
This quantitative microstructural study deals with textures of quartz domains within a mylonitized metapelite collected near a thrust surface corresponding to the tectonic contact between two metamorphic units, which crop out in the Aspromonte Massif, southern Calabria (Italy). The sample investigated lacks a mesoscopic stretching lineation. Therefore, quartz c-axis fabrics were investigated in two mutually orthogonal thin sections (a) parallel to the quartz rod lineation and perpendicular to the foliation (YZ plane) and (b) perpendicular to the quartz rods and perpendicular to the foliation (XZ plane); the data were generated using classical (manual measurements of quartz c-axis using U-stage) and modern methods (Computer Integrated Polarization microscopy). Both these sections show oblique foliations at ca. 40° from the main shear plane, implying that the actual X direction (stretching lineation that is absent on the mesoscopic scale) must lie between these two sections. Quartz c-axis data from the YZ section when rotated by 90° are similar with those from the XZ section. Hence, the data from the two sections are merged. These data when rotated by an angle of 50° from the direction of quartz rod lineation, gives an asymmetrical pattern indicating top-to-the-North sense of shear. This was confirmed by investigating quartz c-axis patterns in a section striking NS and perpendicular to the foliation. Based on the study it is thus concluded that this method can be used to do kinematic analysis in rocks that are devoid of stretching lineations. Apart from the above, the advantages and disadvantages of the classical and modern methods of quartz c-axis analysis are discussed.  相似文献   
6.
Summary Rare garnet-spinel pyroxenite xenoliths occur in some basaltic tuff-breccia levels of Miocene age from the Valle Guffari (Hyblean Plateau, Sicily), together with a number of spinel-bearing mantle xenoliths. The garnet-bearing pyroxenites may be divided into two groups (a and b) on textural and mineralogical bases. Garnet-bearing spinel websterites with a fully recrystallized texture represent the first group (a). Here the garnet (Py54.5 A1m32 Gr13.5), with a diffuse kelyphitic alteration, forms a reaction corona between coarse spinel grains and the in contact pyroxenes. The transition from the spinel-pyroxenite to the garnet-pyroxenite field may depend on isobaric cooling from higher (magmatic?) temperatures. Garnet-pyroxene geothermometry indicates that the last equilibration most probably occurred at P = 1.0 GPa (ca.), T = 750 °C (ca).The second lithotype (b) is an orthopyroxene-bearing garnet-spinel clinopyroxenite, exhibiting a complex texture. It consists of zones of coarse clinopyroxene grains enclosing euhedral spinel passing to zones where tiny rounded crystals of the same pyroxene and spinel are enclosed in relatively large patches of extensively kelyphitisized garnet (Py64.8 Alm25.6 Gr9.6). Garnet also occurs as inclusion-free grains up to 4 mm in diameter. P-T calculations give significantly higher values than for the former case (a). The origin of the b-type garnet may also depend on subsolidus reaction of spinel and pyroxenes after an isobaric cooling from still higher temperatures, but a primary magrnatic origin might also be possible, especially for the granular garnets.P-T estimates for both the pyroxenite types closely match a steady geotherm for 100 mW/m2 surface heat flow. Such a relatively intense heat flow may suggest the occurrence of huge masses of hot magma intruding the Hyblean lithospheric mantle and lower crust at different levels.
Granat-Spinell-Pyroxenit-Xenolithe aus dem Iblei-Plateau (Südost-Sizilien, Italien)
Zusammenfassung Seltene Granat-Spinell-Pyroxenit-Xenolithe kommen in einigen basaltischen Tuff-Breckzien Horizonten miozänen Alters aus dem Valle Guffari (lblei-Plateau, Sizilien) zusammen mit einer Anzahl von Spinell-führenden Mantel-Xenolithen vor. Aufgrund textureller und mineralogischer Kriterien können die Granat-führenden Pyroxenite in zwei Gruppen (a und b) unterteilt werden. Granat-führende Spinell-Websterite mit vollkommen rekristallisierter Textur repräsentieren die erste Gruppe (a). Hier bildet Granat (Py54.5 Alm32 Gr13.5) mit einer diffusen kelyphitischen Umwandlung, einen Reaktionssaum zwischen grobkörnigem Spinell und Pyroxenen, mit denen er in Kontakt ist. Der übergang vom Spinell-Pyroxenit- zum Granat-Pyroxenit-Feld kann auf isobarische Abkühlung von höheren (magmatischen ?) Temperaturen zurückgehen. Granat-Pyroxen-Geothermometrie zeigt, dass die letzte Equilibrierung sehr wahrscheinlich bei P = 1.0 GPa (ca.), T = 750°C (ca.) erfolgte.Der zweite Typ von Granat-führenden Pyroxeniten ist ein (b) Orthopyroxenführender Granat-Spinell-Klinopyroxenit, der komplexe Texturen zeigt. Er besteht aus Zonen von grobkörnigem Klinopyroxen mit Einschlüssen von idiomorphem Spinell, der in Zonen übergeht, wo kleine gerundete Kristalle des gleichen Pyroxens und Spinells in relativ große Bereiche von extensiv kelyphitisiertem Granat (Py64,8 Alm25,6 Gr9,6) eingeschlossen sind. Granat kommt auch als einschlußfreie Körner mit bis zu 4 mm Durchmesser vor. P-T Berechnungen geben wesentlich höhere Werte als für die Gesteine des Types (a). Die Entstehung der b-Typ-Granaten kann auch durch Subsolidus-Reaktion von Spinell und Pyroxen nach isobarischer Abkühlung von noch höheren Temperaturen beeinflußt sein; ein primärer magmatischer Ursprung könnte auch möglich sein, besonders für die körnigen Granate.P-T Abschätzungen für beide Pyroxenit-Typen sind gut einer Geotherme für 100 mW/m2 Wärmefluß an der Oberfläche zuzuordnen. Ein solcher, relativ intensiver Wärmefluß könnte auf das Vorkommen von großen heißen Magmenkörpern hinweisen, die den lithosphärischen Mantel unter dem Iblei-Plateau und die untere Kruste in verschiedenen Niveaus intrudierten.


With 4 Figures  相似文献   
7.
8.
The Peloritani Mountain Belt (north-eastern Sicily) represents the connection between the Southern Appenninic Range and the Appenninic Maghrebid Chain. The lithotypes outcropping in a 36 km long and approximately 8 km wide area in the eastern part of the Peloritani Mountains are considered to represent most properly the composition of the lower crust. We selected 7 representative samples of silicate rocks (amphibolite, paragneisses, augen gneiss, phyllitic quartzite, pegmatitic rock) and 3 samples of calcite rocks (calc-schist, marbles) for the petrophysical measurements. Measurements were done on sample cubes of dry rocks in a multi-anvil apparatus. Raising of pressure gives rise to velocity increase, but the rate is different in the silicate and calcite rocks and closely related to progressive closure of microcracks. Linear behaviour is approached above about 200 MPa. Increasing temperature at 600 MPa decreases velocities in most silicate and in the calcite rocks with almost linear slopes. Substantial anisotropy of P- and S-wave velocities and shear wave splitting is found in both rock types. The residual anisotropy observed above about 200 MPa is attributed to lattice preferred orientations (LPO) of major minerals. 3D velocity calculations for an amphibolite, a paragneiss and a marble sample based on the LPO of hornblende, biotite and calcite, respectively, confirm the experimental findings of a close relationship between velocity anisotropy, shear wave splitting, shear wave polarization, lattice preferred orientation and the structural frame of the rocks (foliation, lineation). In the silicate rocks, the intrinsic (600 MPa) average P-wave velocities and Poisson's (Vp / Vs) ratios exhibit a tendency for a linear increase with densities, whereas the three calcite rocks cluster at markedly higher P-wave velocities and Poisson's (Vp / Vs) ratios, compared to their densities. In the silicate rocks, there is also a linear trend for an inverse relationship between the SiO2 content, density and the Poisson's (Vp / Vs) ratio, respectively.  相似文献   
9.
Vitis vinifera L. vineyards grown on carbonate soil (Hyblean Plateau, SE Sicily) have been characterized in terms of rare earth elements (REEs) distribution. Results highlighted that the absorption of REEs by plants depends on the composition of the underlying soil, which in this case derives from limestone parent rock, allowing us to recognize the area of origin. Indeed, even slight differences in REEs content in soils may affect the absorption pattern of each grapevine cultivar. Importantly, the various parts of the plants showed differences in REEs absorption; such REEs fractionation is particularly evident in the leaf and juice samples. In general, the uptake and concentrations of REEs in plant tissues may be related to many factors such as geographical, climatic and lithological features. This is also pointed out by the statistical investigation, which took into account either the grapevine variety or each part of the plant. By taking into consideration both the grape variety and the type of soil, the present “multi-elemental” approach aims to provide a useful geochemical tool for assessing the geographical origin of the production area of wine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号