首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   4篇
地质学   3篇
海洋学   4篇
自然地理   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Three-dimensional structures of the ionospheric dynamo currents are examined using the neutral winds in a general circulation model of the middle atmosphere at Kyushu University. A quasi-three-dimensional ionospheric dynamo model is constructed assuming an infinite parallel conductivity in the ionosphere. This model is able to simulate both the equatorial electrojet and the global Sq current system successfully. The simulated results reveal that the equatorial electrojet is confined in quite narrow latitudes around the equator accompanied with meridional current circulations and satisfies a non-divergent structure mainly within the E region. A vertically stratified double layered structure is seen in the east–west current density near the focus latitude of the global Sq current system. It is shown that the stratified structure mainly consists of the east–west Hall current associated with the eastward wind of zonal wavenumbers 1 and 2 in the lower altitudes and the westward wind of zonal wavenumber 2 in the upper altitudes. The day-to-day variation of the neutral winds can significantly vary the induced ionospheric dynamo current system, which is recognized as changes of the focus latitude and/or the maximum value of the equatorial electrojet.  相似文献   
2.
We investigated responses of shallow-water benthic foraminifera to changes in climate and ocean conditions, using sediment core ASC2 from Aso-kai lagoon, central Japan. Six AMS 14C dates reveal that the studied interval corresponds to sediments deposited from ~AD 700 to 1600. Sulfur content of the bulk sediment and multi-dimensional scaling (MDS) axis 1 of fossil benthic foraminifera indicate that the composition of the benthic foraminifera community was closely related to dissolved oxygen (DO) concentration in the hypolimnion. The sulfur content and MDS axis 1 also revealed two shifts over the 900-year interval. In the first phase (~AD 700–1250), the Shannon–Wiener Index (H′), E (S200), evenness and rank abundance curve (RAC) kurtosis indicate a gradual deterioration in structure of the benthic foraminifera community. In that period, there are statistically significant correlations between the faunal composition (MDS axis 1) and faunal structure [Shannon–Wiener (H′), E (S200), evenness and RAC kurtosis]. In the second phase (~AD 1250–1600), however, faunal composition and structure show no marked correspondence. Instead, abundance of benthic foraminifera fluctuated on a scale of ~200 years. Thus, a shift in the biotic response of benthic foraminifera in Aso-kai lagoon occurred in ca. AD 1250. Gradual deterioration of benthic foraminifera, with taxonomic losses, is consistent with declining DO in the first phase, possibly associated with the increasing influence of the Tsushima Warm Current. The possibility that closure of Aso-kai lagoon and development of the sand bar affected benthic foraminifera cannot, however, be ruled out. No corresponding response was observed in the second phase, during which there was no distinct taxonomic loss. Large variations in abundance, however, were a consequence of strength of the East Asian summer and winter monsoons. The shift in the biotic response of benthic foraminifera in Aso-kai lagoon during the period AD 700–1600 was apparently a result of changes in climate and ocean conditions on the East Asian continental margin.  相似文献   
3.
The relationship among H2S, total organic carbon (TOC), total sulfur (TS) and total nitrogen contents of surface sediments (0–1 cm) was examined to quantify the relationship between H2S concentrations and TOC content at the sediment water interface in a coastal brackish lake, Nakaumi, southwest Japan. In this lake, bottom water becomes anoxic during summer due to a strong halocline. Lake water has ample dissolved SO4 2? and the surface sediments are rich in planktic organic matter (C/N 7–9), which is highly reactive in terms of sulfate reduction. In this setting the amount of TOC should be a critical factor regulating the activity of sulfate reduction and H2S production. In portions of the lake where sediment TOC content is less than 3.5 %, H2S was very low or absent in both bottom and pore waters. However, in areas with TOC >3.5 %, H2S was correlated with TOC content (pore water H2S (ppm) = 13.9 × TOC (%) ? 52.1, correlation coefficient: 0.72). H2S was also present in areas with sediment TS above 1.2 % (present as iron sulfide), which suggests that iron sulfide formation is tied to the amount of TOC. Based on this relationship, H2S production has progressively increased after the initiation of land reclamation projects in Lake Nakaumi, as the area of sapropel sediments has significantly increased. This TOC–H2S relationship at sediment–water interface might be used to infer H2S production in brackish–lagoonal systems similar to Lake Nakaumi, with readily available SO4 2? and reactive organic matter.  相似文献   
4.
The clay minerals in the 18 core samples collected from the northern, equatorial and southeastern Indian Ocean are illite, chlorite, montmorillonite and kaolinite. In the fraction finer than 2 in the surface layer (top to 5 cm deep) of each core, the relative abundance of clay minerals varies widely from area to area. Kaolinite possesses the maximum proportion of the clay mineral composition and chlorite has the minimum proportion.Kaolinite is particularly dominant in sediments near off the northwestern coast of Australia. In the factions finer and coarser than 2 of the surface layer, montmorillonite and kaolinite tend to be abundant in the fraction finer than 2, and chlorite and illite tend to be abundant in the fraction coarser than 2. In some cores, kaolinite-rich layers in sediments which are considered to have been transported by turbidity currents from the Bay of Bengal are found. Turbidity currents appear partly a role in transport of sediments to the equatorial Indian Ocean.As to the relation between the vertical change of clay mineral composition and geochronological data, montmorillonite and kaolinite tend to be more abundant in interglacial ages than in glacial ages, while illite and chlorite tend to exhibit opposite trend.Muscovite and biotite highly concentrated in the cores Ka-9 and Ka-15 collected from the equatorial Indian Ocean seem to originate from granite or gneiss of Ceylon and/or India.  相似文献   
5.
The 25 sediment samples collected from the Gulf of Thailand and the South China Sea were analyzed for clay mineral investigation. Results showed the presence of 35% montmorillonite, 13% chlorite, 30% illite, and 22% kaolinite in sediments of the Gulf and also 16% montmorillonite, 21% chlorite, 41% illite, and 22% kaolinite in sediments of the South China Sea. The relatively high concentration of montmorillonite in sediments of the Gulf as compared with that in sediments of the South China Sea may suggest that montmorillonite in these area has been largely derived from soil formation of the bordering land areas of the Gulf, particularly from the northern part of Malay Peninsula. On the contrary, the content of illite in sediments of the South China Sea is higher than that in the Gulf. This mineral appears to have been supplied from Borneo as well as the Mekong Delta. However, chlorite which shows a similar distribution to that of illite in sediments of the Gulf and the South China Sea has not indicated Borneo Isl. as a principal source area for chlorite. Greater resemblance in amount of kaolinite in both sediments of the Gulf and the South China Sea is due to the prevailing distribution of kaolinite as low latitude clay mineral on the bordering land areas. The distribution of clay minerals in sediments of the study area appears to be closely related to the soil formation and geology of the adjacent land areas.This work was carried out at Geological and Mineralogical Institute, Tokyo University of Education.  相似文献   
6.
Clay minerals in seven shallow water (100 to 600 m deep) dredged samples and in two deep-sea (3,000 to 5,000 m deep) core samples near West Antarctica were investigated by X-ray diffraction analyses. Variation of montmorillonite concentration appears to be closely related to volcanic activity. Chlorite is the most dominant constituent in most of the dredged samples, though it is not a principal component in core samples. Illite concentration is negatively correlated to that of montmorillonite. Kaolinite is found in four out of seven dredged samples near and around the Antarctic Peninsula while the content of kaolinite in two deep-sea cores from the Pacific-Antarctic Basin and the Indian-Antarctic Basin is more abundant than in the dredged samples. The clay mineral composition in the latter two basins may be closely related to volcanic activity and mechanical weathering products near and on Antarctica.  相似文献   
7.
Clay minerals in the <2 fraction of the four deep-sea cores collected from the northeast and central North Pacific are studied. In the surface layers of the cores, illite is more dominant in the pelagic samples than in the near-shore ones, and montmorillonite is vice versa. Chlorite in the near-shore sample is relatively abundant in the areas of higher latitude than in those of lower latitude. Kaolinite content is less than 10 percent in all samples. The presence of particles of amphibole in the clay-size was confirmed by X-ray analysis in the whole of the core-st. 18 taken from the northeastern portion of the area. This fact suggests that, for a long time probably since the Tertiary age, particles of amphibole have been supplied from source areas. In the three cores except the core-st. 18 it is shown that montmorillonite clearly increases downward. It is suggested that montmorillonite has been derived from volcanic glassy material by a diagenetic change. Montmorillonite in the bottom layer (400–405 cm) of the core-st. 9 is particularly rich in iron.  相似文献   
8.
We present field and core observations, nannofossil biostratigraphy, and stable oxygen isotope fluctuations in foraminiferal tests to describe the geology and to construct an age model of the Lower Pleistocene Nojima, Ofuna, and Koshiba Formations (in ascending order) of the middle Kazusa Group, a forearc basin‐fill succession, exposed on the northern Miura Peninsula on the Pacific side of central Japan. In the study area, the Nojima Formation is composed of sandy mudstone and alternating sandy mudstone and mudstone, the Ofuna Formation of massive mudstone, and the Koshiba Formation of sandy mudstone, muddy sandstone, and sandstone. The Kazusa Group contains many tuff beds that are characteristic of forearc deposits. Thirty‐six of those tuff beds have characteristic lithologies and stratigraphic positions that allow them to be traced over considerable distances. Examination of calcareous nannofossils revealed three nannofossil datum planes in the sequences: datum 10 (first appearance of large Gephyrocapsa), datum 11 (first appearance of Gephyrocapsa oceanica), and datum 12 (first appearance of Gephyrocapsa caribbeanica). Stable oxygen isotope data from the tests of the planktonic foraminifer Globorotalia inflata extracted from cores were measured to identify the stratigraphic fluctuations of oxygen isotope ratios that are controlled by glacial–interglacial cycles. The observed fluctuations were assigned to marine isotope stages (MISs) 49–61 on the basis of correlations of the fluctuations with nannofossil datum planes. Using the age model obtained, we estimated the ages of 24 tuff beds. Among these, the SKT‐11 and SKT‐12 tuff beds have been correlated with the Kd25 and Kd24 tuff beds, respectively, of the Kiwada Formation on the Boso Peninsula. The Kd25 and Kd24 tuff beds are widely recognized in Pleistocene strata in Japan. We used our age model to date SKT‐11 at 1573 ka and SKT‐12 at 1543 ka.  相似文献   
9.
Stable isotopes and element compositions of the fine‐grained matrix were measured for IODP Expedition 307 Hole U1317E drilled from the summit of Challenger Mound in Porcupine Seabight, northeast Atlantic, to explore the palaeoceanographic and palaeoclimatic background to development of the deep‐water coral mound. The 155 m long mound section was divided into two units by an unconformity at 23.6 mbsf: Unit M1 (2.6–1.7 Ma) and Unit M2 (1.0–0.5 Ma). Results from 519 specimens show a difference in δ13C value between Unit M1 (?0.6‰ to ?5.0‰) and Unit M2 (?1.0‰ to 1.0‰), but such a distinct difference was not seen in δ18O values (1.0‰–2.5‰), CaCO3 content (40–60 wt%), Sr/Ca ratio (2.0–8.0 mmol mol?1), and Mg/Ca ratio (10.0–20.0 mmol mol?1) through the mound. Positive δ18O and negative δ13C shifts at the mound base are consistent with the oceanographic changes in the northeast Atlantic at the beginning of the Quaternary. The positive δ13C regression in Unit M2 suggests a linkage to the mid Pleistocene intensified glaciation in the Northern Hemisphere. Warm Mediterranean Upper Core Water of Mediterranean Outflow Water, Eastern North Atlantic Water and cold Labrador Sea Water of North Atlantic Deep Water are key oceanographic features that cause spikes and shifts in stable isotope and element composition. However, the stable isotope values of the sediment matrix could not primarily record the glacial–interglacial eustatic/temperature change, but indirectly indicate current regimes of the intermediate oceanic layer where the coral mound grew. Similarly, elemental ratios and CaCO3 content may not represent the productivity and temperature of surface sea water, respectively, but superpose the fractions from both surface and bottom water. It is concluded that palaeoceanographic change coupled to the Pleistocene glacial/interglacial cycles is a key control on the geochemical stratigraphy of the matrix sediments of the carbonate mound developed in Porcupine Seabight. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
Saburo  Sakai  Mayumi  Jige 《Island Arc》2006,15(4):468-475
Abstract   Characterization of magnetic particles, and magnetostratigraphic dating, of Holocene and Pleistocene shallow-water carbonates (the Ryukyu Group) in the Ryukyu Islands was carried out to infer the age of reef formation. Magnetic particles from these strata are dominated by fine-grained, single-domain magnetite/maghemite (40–140 nm in length). The magnetite crystals exhibit the size and morphologies characteristic of the magnetite formed by magnetotactic bacteria. No large multidomain grains were seen in transmission electron microscopy observations. The widespread presence of single-domain magnetite in the Ryukyu Islands suggests that bacterial magnetites carry depositional remanent magnetization, which is stable enough for magnetostratigraphic dating and thereby for elucidating the evolution of shallow-water carbonates. The polarity-reversal sequence seen in a core taken from the Ryukyu Group correlates with the timescale of the Matuyama chron, including the Jaramillo subchron, Kamikatsura or Santa Rosa Excursions, through the Brunhes chron. These magnetostratigraphic results imply that the time of reef initiation in the Ryukyu Islands of the northwestern Pacific was earlier than in the Great Barrier Reef of the southwestern Pacific, where it started after the Brunhes–Matuyama boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号