首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地球物理   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Slaughterhouse wastewater is one of the main sources of environmental pollutants, containing a high amount of organic matter (chemical oxygen demand (COD), biochemical oxygen demand (BOD)), total nitrogen (TN), total suspended solids (TSS), total phosphorus (TP), grease, and oil. The main aim of the present research is optimizing the coagulation–flocculation process and examining the effects of experimental factors with each other, for example, pH, the concentration of two different coagulants (FeCl3 and alum), rapid mixing rate, and settling time. Therefore, it is aimed to treat slaughterhouse wastewater using the coagulation–flocculation process with the optimization of the response surface methodology (RSM). COD, turbidity, and suspended solids (SS) of the treated wastewater are chosen as the response variables. Furthermore, the optimal conditions for three responses are acquired by employing the desirability function approach. When the experimental results of two coagulants are compared, it is observed that the alum coagulant gave better results for the three responses. The alum coagulant utilized in the present research is able to increase COD, SS, and turbidity removal efficiency by 75.25%, 90.16%, and 91.18%, respectively. It is possible to optimize coagulation–flocculation by utilizing the RSM analysis, which proves that coagulation can pre‐treat slaughterhouse wastewater.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号