首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2011年   1篇
  2009年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In the present work, biosorption of Cr(VI) by Nymphaea rubra was investigated in batch studies. Batch experiments were conducted to study the effect of initial sorbent dosage, solution pH and initial Cr(VI) concentration. The results showed that the equilibrium uptake capacity was increased with decrease in biomass dosage. The Cr(VI) removal was influenced by the initial chromium compound concentration. Langmuir and Freundlich adsorption isotherm models were used to represent the equilibrium data. The Freundlich isotherm model was fitted very well with the equilibrium data when compared to Langmuir isotherm model. The sorption results were analyzed for pseudo‐first order and pseudo‐second order kinetic model. It was observed that the kinetic data fitted very well with the pseudo‐second order rate equation when compared to the pseudo‐first order rate equation. Fourier transform infrared spectrum showed the presence of different functional groups in the biomass. The surface morphology of the sorbent was exemplified by SEM analysis. Aquatic weeds seem to be a promising biosorbent for the removal of chromium ions from water environment. This paper reports the research findings of a laboratory‐based study on the removal of Cr(VI) from the synthetic solution using the dried stem of N. rubra as a biosorbent.  相似文献   
2.
Nymphaea rubra stem was used as a low cost and easily available biosorbent for the removal of Reactive Red 2 dye from an aqueous solution. Initially, the effects of biosorbent dosage (0.2–1.0 g L–1), pH (1–6), and dye concentration (30–110 mg L–1) on dye removal were studied. Batch experiments were carried out for biosorption kinetics and isotherm studies. The results showed that dye uptake capacity was found to increase with a decrease in biosorbent dosage. Equilibrium uptake capacity was found to be greatest at a pH value of 2.0, when compared to all other pH values studied. The equilibrium biosorption isotherms were analyzed by the Freundlich and Langmuir models. The equilibrium data was found to fit very well with the Freundlich isotherm model when compared to the Langmuir isotherm model. The kinetic data was analyzed using pseudo-first order and pseudo-second order kinetic models. From the results, it was observed that the kinetic data was found to fit the pseudo-second order kinetic model very well. The surface morphology of the stem of the N. rubra biosorbent was exemplified by scanning electron microscopy. Fourier transform infrared analysis was employed to confirm the existence of an amine group in the stem of N. rubra.  相似文献   
3.
The percentage removal and uptake capacity of Basic Violet 14 using Hydrilla verticillata with living biomass was studied under batch conditions. The survival of H. verticillata was studied using the chlorophyll content in the living biomass. Bioaccumulation of Basic Violet 14 using H. verticillata was tested by varying the wet sorbent dosage (0.5–2.5 g), initial pH (3–8), and initial dye concentrations (5–25 mg L?1). The results show that the plant was effectively accumulating the Basic Violet 14 dye. The uptake capacity of Basic Violet 14 dye was observed as 5.9 and 21.3 mg g?1 at the initial dye concentration of 5 and 25 mg L?1, respectively, for a biomass of 5 g L?1 (wet weight) at pH 7.0 for 144 h. In general, the plant growth was found to be normal at lower concentrations and showed higher removal efficiency. It was also observed that removal efficiency of H. verticillata was found to decrease with increase in initial dye concentration. The biomass sample surface was analyzed using SEM imaging and functional groups present in the biomass were analyzed using FTIR. The equilibrium uptake capacity was analyzed by Langmuir and Freundlich isotherms. The equilibrium data was found to be fit well to both Langmuir and Freundlich isotherm models with higher coefficient of determination.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号