首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
测绘学   1篇
地球物理   3篇
地质学   7篇
海洋学   1篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2011年   3篇
  2006年   1篇
  2005年   1篇
  2003年   4篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Reliability based risk index for the design of reinforced earth structures   总被引:1,自引:0,他引:1  
The design methods currently used for earth reinforcement are mostly based on deterministic properties of both the soil and the construction materials used. Nowadays, however, the general trend is designing at a specific degree of reliability. This is even more true where the raw data such as soil properties exhibit significant variation. Deterministic solutions, in this case, may not suffice. Therefore, this paper will attempt to use probabilistic formulations thereby modifying the existing design procedure of reinforced earth retaining walls to account for uncertainties and variabilities. Through a first order Taylor's series expansion about the mean, the mean and variance of the strip reinforcing components, namely width and length, are derived in terms of the variations in the soil properties. Design charts that enable estimation of both mean and variance are developed to avoid extensive partial differentiation involved in the computations. Using appropriate probability distributions along with the mean and variance, the final design outputs are determined for a selected failure probability by introducing what is refered to as 'risk index'. The results indicate that the risk index increases with an increase in the coefficient of variations and a decrease in failure probability. Furthermore, it is shown that in some cases, depending on the variabilities of the soil properties, the classical design technique produced a relatively high failure probability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
The identification of groundwater parameters in heterogeneous systems is a major challenge in groundwater modeling. Flexible parameterization methods are needed to assess the complexity of the spatial distributions of these parameters in real aquifers. In this article, we introduce an adaptative parameterization to identify the distribution of hydraulic conductivity within the large‐scale (4400 km2) Upper Rhine aquifer. The method is based on adaptative multiscale triangulation (AMT) coupled with an inverse problem procedure that identifies the parameters' distributions by reducing the error between measured and simulated heads. The AMT method has the advantage of combining both zonation and interpolation approaches. The AMT method uses area‐based interpolation rather than an interpolation based on stochastic features. The method is applied to a standard 2D groundwater model that takes into account the interactions between the aquifer and surface water bodies, groundwater recharge, and pumping wells. The simulation period covers 204 months, from January 1986 to December 2002. Recordings at 109 piezometers are used for model calibration. The simulated heads are globally quite accurate and reproduce the main dynamics of the system. The local hydraulic conductivities resulting from the AMT method agree qualitatively with existing local experimental observations across the Rhine aquifer.  相似文献   
3.
Batch experiments were conducted to study the sorption of uranium on selected clay minerals (KGa-1b and KGa-2 reference kaolinite, SWy-2 and STx-1b reference montmorillonite, and IBECO natural bentonite) as a function of pH (4–9) and 0.001, 0.01, and 0.025 M NaCl in equilibrium with the CO2 partial pressure of the atmosphere. Uranium concentrations were kept below 100 μg L−1 to avoid precipitation of amorphous Uranium-hydroxides. Solely PTFE containers and materials were used, because experiments showed significant sorption at higher pH on glass ware. All batch experiments were performed over a period of 24 h, since kinetic experiments proved that the common 10 or 15 min are in many cases by far not sufficient to reach equilibrium. Kaolinite showed much greater uranium sorption than the other clay minerals due to the more aluminol sites available. Sorption on the poorly crystallized KGa-2 was higher than on the well-crystallized KGa-1b. Uranium sorption on STx-1b and IBECO exhibited parabolic behavior with a sorption maximum around pH 6.5. Sorption of uranium on montmorillonites showed a distinct dependency on sodium concentrations because of the effective competition between uranyl and sodium ions, whereas less significant differences in sorption were found for kaolinite. The presence of anatase as impurity in kaolinite enhanced the binding of uranyl-carbonate complexes with surface sites. The kinetic of uranium sorption behavior was primarily dependent on the clay minerals and pH. A multisite surface complexation model without assuming exchange is based on the binding of the most dominant uranium species to aluminol and silanol edge sites of montmorillonite, respectively to aluminol and titanol surface sites of kaolinite. For eight surface species, the log_k was determined from the experimental data using the parameter estimation code PEST together with PHREEQC.  相似文献   
4.
5.
The Eastern Mediterranean Levant Basin is a proven hydrocarbon province with recent major gas discoveries. To date, no exploration wells targeted its northern part, in particular the Lebanese offshore. The present study assesses the tectono‐stratigraphic evolution and related petroleum systems of the northern Levant Basin via an integrated approach that combines stratigraphic forward modeling and petroleum systems/basin modeling based on the previous published work. Stratigraphic modeling results provide a best‐fit realisation of the basin‐scale sedimentary filling, from the post‐rift Upper Jurassic until the Pliocene. Simulation results suggest dominant eastern marginal and Arabian Plate sources for Cenozoic siliciclastic sediments and a significant contribution from the southern Nilotic source mostly from Lower Oligocene to Lower Miocene. Basin modeling results suggest the presence of a working thermogenic petroleum system with mature source rocks localised in the deeper offshore. The generated hydrocarbons migrated through the deep basin within Jurassic and Cretaceous permeable layers towards the Latakia Ridge in the north and the Levant margin and offshore topographic highs. Furthermore, the basin model indicates a possibly significant influence of salt deposition during Messinian salinity crisis on formation fluids. Ultimately, the proposed integrated workflow provides a powerful tool for the assessment of petroleum systems in underexplored areas.  相似文献   
6.
In this work, we describe a high-resolution fluorometric shipboard analyser and an improved method to determine NH4+ in oligotrophic seawater. The limit of detection is <5 nM, calculated with 95% confidence level using the weighted regression line applied to the standard addition method using real samples prepared with low nutrient seawater from the Atlantic. The results are summarised and cross-compared with spiked artificial seawater (ASW) and spiked Milli-Q water samples. The analyser has a precision of ±1–4% with a high performance over a wide range from 5 nM to 25 μM. The methodology of NH4+ analysis is based on the fluorescent product formed between o-pthaldialdehyde and NH4+ in the presence of sulfite. Due to the high resolution of the developed system, we were able to study in depth the sensitivity of the method to salinity, amines, amino acids and potential interferences from particles/algae. The method was found to be sensitive to salinity variations, reducing the signal by up to 85% at 5 nM; this effect decreased at higher concentrations of ammonium. It was noted that the interference from amines at low concentrations was negligible; however, at either high amino acid or high amine concentrations, the signal was depressed. To test for the effect of particles on the system, the system was tested with samples containing phytoplankton (Dunaliella primolecta) cells at different concentrations prepared with ASW to simulate the effect of a phytoplankton bloom. This experiment assessed the potential impact of both particles and other potential fluorescence interferences from cells and/or ammonium leaching from cells. This experiment showed that a phytoplankton bloom could potentially have an impact of up to 12% on the signal of interest. Thus, we propose that this method is suitable for oligotrophic environments rather than coastal and eutrophic environments. The reagent was found to be stable for 17 days and standards of 1 μM were stable for 6 days under laboratory conditions. The developed analyser was successfully demonstrated in the North Atlantic Ocean, in an area of oligotrophic, low NH4+ oceanic waters.  相似文献   
7.
Unmanned underwater vehicles (UUVs) typically operate in uncertain and changing environments. Globally convergent Lyapunov-based parameter-adaptive controllers for six-degree-of-freedom position and attitude trajectory-tracking control of astable UUVs have been successfully derived and applied. We propose an efficient adaptive-control scheme for UUVs based on existing parameter-adaptation schemes popular in the robotics literature. Specifically, we customize bounded-gain-forgetting composite adaptation, which utilizes information about both the tracking and model-prediction errors to yield faster parameter convergence than the traditional tracking-error-based (TEB) adaptation. Hence, better transient behavior of tracking errors is achieved by using fewer control efforts in most cases. We show the effectiveness of applying the suggested adaptation scheme on UUVs through simulation.  相似文献   
8.
Parametric study was carried out in this paper using the Finite Element Method (FEM) to study the effects of variations of the two parameters, i.e., variations in batter slope and foundation properties under static and dynamic loading conditions on the distribution of the peak stresses within the dam and foundation soils. The response spectra for the operating basis earthquake (OBE) and the maximum credible earthquake (MCE) were used in the dynamic analysis. It is shown that the distribution of peak stresses across base of dam and the extent of tensile zone on the foundation soils at the foundation level vary with the variations in the batter slope. Generally, as the batter slope increases the extent of the tensile zone at the foundation level decreases but not necessarily the maximum tensile stresses. However, an optimum batter slope could be achieved based on the results of this parametric study. It should be noted that the greatest tension is developed in the rock adjacent to the toe of the batter. For the foundation mechanical properties, it has been shown that the assessment of accurate soil mechanical properties has a great effect on the computed design stresses from finite element analysis. However, the greatest effect of the foundation properties was on the stresses at the base of dam while it has a negligible effect within the dam body.  相似文献   
9.
10.
Most of the topsoils encountered in United Arab Emirates and in the Arabian Peninsula are granular soils with small percentages of silt and clay. Determination of the compaction characteristics of such soils is an essential task in preparing for construction work. The accumulating experience over many years of soil testing in our laboratories suggested that there exists an underlying trend that governs the compaction characteristics of such soils. As such, a study was undertaken to assess the compaction characteristics of such soils and to develop the governing predictive equations. For the purposes of this study, 311 soil samples were collected from various locations in the United Arab Emirates, and tested for various including grain-size distribution, liquid limit, plasticity index, specific gravity of soil solids, maximum dry density of compaction, and optimum moisture content following ASTM D 1557-91 standard procedure C. Following the development of the predictive equations, a new set of 43 soil samples were collected and their compaction results were used to test the validity of predictive model. The range of variables for these soils were as follows: percent retained on US sieve #4 (R#4): 0–68; Percent passing US sieve #200 (P#200): 1–26; Liquid limit: 0–56; Plasticity index: 0–28; Specific gravity of soil solids: 2.55–2.8. Based on the compaction tests results, multiple regression analyses were conducted to develop mathematical models and nomographic solutions to predict the compaction properties of soils. The results indicated that the nomographs could predict well the maximum dry density within ±5% confidence interval and the optimum moisture content within ±3%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号