首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   11篇
  国内免费   52篇
测绘学   10篇
大气科学   26篇
地球物理   42篇
地质学   274篇
海洋学   4篇
天文学   24篇
综合类   5篇
自然地理   5篇
  2023年   3篇
  2022年   10篇
  2021年   7篇
  2020年   10篇
  2019年   11篇
  2018年   28篇
  2017年   21篇
  2016年   14篇
  2015年   17篇
  2014年   14篇
  2013年   34篇
  2012年   25篇
  2011年   18篇
  2010年   20篇
  2009年   17篇
  2008年   15篇
  2007年   7篇
  2006年   16篇
  2005年   12篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   11篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1971年   3篇
  1970年   1篇
排序方式: 共有390条查询结果,搜索用时 125 毫秒
1.
Summary Upper amphibolite facies gneisses in the southern Indian Shield show local transformation into veins, clots and patches of orthopyroxene-bearing dry granulites (incipient charnockites). Depending upon the protolith composition, these desiccated zones are classified into ortho- and para-charnockites and have developed within rocks of distinct mineralogy and chemistry at different time intervals through the structurally-controlled influx of carbon dioxide-rich fluids. Our geochemical investigations at five critical quarry sections indicate that the incipient charnockites have undepleted chemistry and very low K/Rb values. In the paracharnockite localities, where granulite formation is characterized by consumption of garnet, biotite and quartz to produce orthopyroxene, loss of Rb and Ba and enrichment of Ti are observed. In contrast, the orthocharnockite localities show marked LILE enrichment with gain of K, Rb and Ba and loss of CaO, suggesting extensive replacement of plagioclase in the gneisses by K-feldspar in the charnockite through K-Na-Ca exchange reactions with influxing carbonic fluids. The marked depletion in Fe, Mg, Ti and P in these rocks correlates with progressive dissolution of hornblende, biotite, magnetite and accessory apatite. Our study indicates that gneiss to granulite transformation, even if on a local scale, is not an isochemical phenomenon, but attended by distinct element mobilities, although they are contrastingly different from the geochemical trends in some regional high grade terrains.
Geochemie von Gneiss-Granulit-Übergängen in den Incipient Charnockite Zonen von Süd-Indien
Zusammenfassung Gneise der oberen Amphibolit-Fazies im Südteil des Indischen Schildes zeigen lokal Umwandlungen in Adern, and unregelmäßigen Bereichen von orthopyroxen-führenden trockenen Granuliten (Incipient Charnockites). In Abhängigkeit von der Zusammensetzung des Ausgangsgesteins werden diese Zonen in Ortho- und Paracharnockite eingeteilt. Sie entwickelten sich in Gesteinen von charakteristischer mineralogischer und chemischer Zusammensetzung zu verschiedenen Zeit-Intervallen durch die tektonisch kontrollierte Zufuhr von kohlendioxid-reichen Fluiden. Unsere geochemischen Untersuchungen an fünf strategisch ausgewählten Steinbruchen zeigen, daß die Incipient Charnockite eine nicht verarmte chemische Zusammensetzung und sehr niedrige K/Rb Werte haben. In den Paracharnockit-Lokalitäten, wo Granulitbildung charakterisiert wird durch das Verschwinden von Granat, Biotit und Quartz, aus denen Orthopyroxene gebildet werden, ist Verlust von Rb und Ba und Anreicherung an Ti zu beobachten. Im Gegensatz dazu zeigen die Orthocharnockite eindeutige LILE Anreicherung mit Zunahme von K, Rb, und Ba und Verlust von Ca0. Dies weist auf extensiven Ersatz von Plagioklas in den Gneisen durch K-Feldspat in den Charnockiten durch K-Na-Ca Austausch-Reaktionen mit zugeführten C02-Fluiden hin. Die deutliche Verarmung an Fe, Mg, Ti und P in diesen Gesteinen wird mit zunehmender Auflösung von Hornblende, Biotit, Magnetit und akzessorischem Apatit erKlärt. Unsere Untersuchungen zeigen, daß die Gneis-Granulit Transformation auch im lokalen Maßstab nicht ein isochemisches Phänomen ist, sondern durch charakteristische Elementtransporte charakterisiert wird. Diese unterscheiden sich jedoch deutlich von den geochemischen Trends, die in einigen regional-metamorphen high grade terrains zu beobachten sind.[/p]
  相似文献   
2.
Modified similarity method has been used to study the propagation of spherical-variable energy blast waves through a self-gravitating gas. For an energy inputE =E 0t4/3, whereE is the energy released up to timet andE 0 is a functional constant, the similarity solutions correct up to third approximation have been obtained. It is found that the effects of self-gravitational forces are of third order. An increase in the parameterA 2 (characterising the gravitational field) increases the shock velocity.  相似文献   
3.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
4.
Annual variations of mixed-layer characteristics at New Delhi, India have been studied for a weak monsoon (1987) and a strong monsoon (1988) year. In the weak monsoon year (1987), the maximum mixing depthh max was found to have a value of around 3000 m during the pre-monsoon, less than 2000 m during the summer monsoon, around 2000 m during the post-monsoon, and less than 1000 m in the winter season. For the strong monsoon year (1988),h max values were less than 1987 values for comparable periods throughout the year. The seasonal and yearly differences ofh max were explained by the surface energy balance and potential temperature gradient at a time close to sunrise. According to the spatial patterns of obtained by an objective analysis of the 850 to 700 hPa layers. mixed-layer characteristics obtained at New Delhi are representative of the north and central regions of India.  相似文献   
5.
The occurrence of a charnockitised felsic gneiss adjacent to a marble/calc-silicate horizon at Nuliyam, southern India, has been cited in recent literature as a classic example of the dehydration of crustal rocks resulting from the advective infiltration of CO2-rich fluids generated from a local carbonate source. Petrographic study of the Nuliyam calc-silicate, however, reveals it to consist of abundant wollastonite and scapolite and contain locally discordant veins rich in wollastonite. At the pressure—temperature conditions proposed for charnockite formation in recent studies, 5 kbar and 725°C, this wollastonite-bearing mineral assemblage was stable in the presence of a fluid phase only if X CO2 was near 0.25 and could not have coexisted with the fluid causing biotite breakdown and charnockite development in adjacent rocks (X CO2>0.85). The stable coexistence of wollastonite and scapolite prohibits the calc-silicate from being a source for fluid driving charnockitisation at the required P-T conditions. Textural observations such as the limited replacement of wollastonite by calcite+quartz symplectites and mosaics, are consistent with late fluid infiltration into the calc-silicate. The extensive isotopic, chemical and mineral abundance data of Jackson and Santosh (1992) are re-interpreted and integrated with these observations to develop a model involving the infiltration of an externally derived CO2-rich fluid during high-temperature decompression. Increased charnockite development next to the calc-silicate has arisen because the calc-silicate acted as a relatively unreactive and impermeable barrier to fluid transport and caused fluid ponding beneath antiformal closures. The Nuliyam charnockite/calc-silicate locality is an example of a structural trap in a metamorphic setting rather than a site where charnockite formation can be attributed to local fluid sources.  相似文献   
6.
7.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   
8.
9.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   
10.
M. Santosh  K. Sajeev   《Lithos》2006,92(3-4):447-464
We report three new localities of corundum and sapphirine-bearing hyper aluminous Mg-rich and silica-poor ultrahigh-temperature granulites formed during Late Neoproterozoic-Cambrian times within the Palghat–Cauvery Shear Zone system in southern India. From petrologic characteristics, mineral chemistry and petrogenetic grid considerations, the peak metamorphic conditions of these rocks are inferred to lie around 950–1000 °C (as suggested by Al in orthopyroxene thermometer) at pressures above 10 kbar (as indicated by the equilibrium orthopyroxene–sillimanite–gedrite ± quartz assemblage). These rocks preserve several remarkable reaction textures, the most prominent among which is the triple corona of spinel–sapphirine–cordierite on corundum, with the whole textural assembly embedded within the matrix of gedrite, suggesting the reaction: Ged + Crn = Spl + Spr + Crd. The formation of sapphirine–sillimanite assemblage/symplectite associated with relict corundum and porphyroblasitc cordierite is explained by the reaction: Crd + Crn = Spr + Sil. The association of sapphirine cordierite symplectite with gedrite–sillimanite assemblage as well as with aluminosilicate boundaries indicates the gedrite consuming reaction: Ged + Sil = Spr + Crd. Extensive growth of sapphirine–cordierite observed on the rim of gedrite porphyroblasts with spinel occurring as relict inclusions within the sapphirine indicates the reaction: Ged + Spl = Spr + Crd. The pressure–temperature (PT) path defined from the observed mineral assemblages and reaction texture is characterized by anticlockwise trajectory, with a prograde segment of initial heating and subsequent deep burial, followed by retrograde near-isothermal decompression. Such an anticlockwise trajectory is being reported for the first time from southern India and has important tectonic implications since these rocks were developed at the leading edge of the crustal block that was involved in collisional orogeny and subsequent extension during the final phase of assembly of the Gondwana supercontinent. We propose that the rocks were subjected to deep subduction and rapid exhumation, and the extreme thermal conditions were attained either through input from underplated mantle-derived magmas, or convective thinning or detachment of the lithospheric thermal boundary layer during or after crustal thickening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号