首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
大气科学   2篇
地球物理   2篇
地质学   11篇
海洋学   6篇
  2022年   1篇
  2018年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Hydrographic observations in the eastern Arabian Sea (EAS) during summer monsoon 2002 (during the first phase of the Arabian Sea Monsoon Experiment (ARMEX)) include two approximately fortnight-long CTD time series. A barrier layer was observed occasionally during the two time series. These ephemeral barrier layers were caused byin situ rainfall, and by advection of low-salinity (high-salinity) waters at the surface (below the surface mixed layer). These barrier layers were advected away from the source region by the West India Coastal Current and had no discernible effect on the sea surface temperature. The three high-salinity water masses, the Arabian Sea High Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW), and the Arabian Sea Salinity Minimum also exhibited intermittency: they appeared and disappeared during the time series. The concentration of the ASHSW, PGW, and RSW decreased equatorward, and that of the RSW also decreased offshore. The observations suggest that the RSW is advected equatorward along the continental slope off the Indian west coast.  相似文献   
2.
Monthly-mean winds and currents have been used to identify the driving mechanisms of seasonal coastal circulation in the North Indian Ocean. The main conclusions are: (i) the surface circulation off Arabia is typical of a wind-driven system with similar patterns of longshore current and wind stress; (ii) circulation off the west coast of India is consistent with the dynamics of a wind-driven eastern boundary current only during the southwest monsoon. During the northeast monsoon it is possible that the influence of the interior flow is important. (iii) There are at least three mechanisms that influence the surface circulation off the east coast of India: wind-stress, influence of fresh-water run off and contribution of the interior flow. It is difficult at present to assess the relative importance of these three processes.  相似文献   
3.
The dynamics and thermodynamics of the surface layer of the Arabian Sea, north of about 10N, are dominated by the monsoon-related annual cycle of air-sea fluxes of momentum and heat. The currents in open-sea regime of this layer can be largely accounted for by Ekman drift and the thermal field is dominated by local heat fluxes. The geostrophic currents in open-sea subsurface regime also show a seasonal cycle and there is some evidence that signatures of this cycle appear as deep as 1000 m. The forcing due to Ekman suction is an important mechanism for the geostrophic currents in the central and western parts of the Sea. Recent studies suggest that the eastern part is strongly influenced by the Rossby waves radiated by the Kelvin waves propagating along the west coast of India. The circulation in the coastal region off Oman is driven mainly by local winds and there is no remotely driven western boundary current. Local wind-driving is also important to the coastal circulation off western India during the southwest monsoon but not during the northeast monsoon when a strong (approximately 7 × 106m3/sec) current moves poleward against weak winds. This current is driven by a pressure gradient which forms along this coast during the northeast monsoon due to either thermohaline-forcing or due to the arrival of Kelvin waves from the Bay of Bengal. The present speculation about flow of bottom water (deeper than about 3500 m) in the Arabian Sea is that it moves northward and upwells into the layer of North Indian Deep Water (approximately 1500–3500m). It is further speculated that the flow in this layer consists of a poleward western boundary current and a weak equatorward flow in the interior. It is not known if there is an annual cycle associated with the deep and the bottom water circulation.  相似文献   
4.
Sea surface temperature (SST) variability over the Bay of Bengal (BoB) has the potential to trigger deep moist convection thereby affecting the active-break cycle of the monsoons. Normally, during the summer monsoon season, SST over the BoB is observed to be greater than 28°C which is a pre-requisite for convection. During June 2009, satellite observations revealed an anomalous basin-wide cooling and the month is noted for reduced rainfall over the Indian subcontinent. In this study, we analyze the likely mechanisms of this cooling event using both satellite and moored buoy observations. Observations showed deepened mixed layer, stronger surface currents, and enhanced heat loss at the surface in the BoB. Mixed layer heat balance analysis is carried out to resolve the relative importance of various processes involved. We show that the cooling event is primarily induced by the heat losses at the surface resulting from the strong wind anomalies, and advection and vertical entrainment playing secondary roles.  相似文献   
5.
The 27 November 1945 earthquake in the Makran Subduction Zone triggered a destructive tsunami that has left important problems unresolved. According to the available reports, high waves persisted along the Makran coast and at Karachi for several hours after the arrival of the first wave. Long-duration sea-level oscillations were also reported from Port Victoria, Seychelles. On the other hand, only one high wave was reported from Mumbai. Tide-gauge records of the tsunami from Karachi and Mumbai confirm these reports. While the data from Mumbai shows a single high wave, Karachi data shows that high waves persisted for more than 7 h, with maximum wave height occurring 2.8 h after the arrival of the first wave. In this paper, we analyze the cause of these persistent high waves using a numerical model. The simulation reproduces the observed features reasonably well, particularly the persistent high waves at Karachi and the single high wave at Mumbai. It further reveals that the persistent high waves along the Makran coast and at Karachi were the result of trapping of the tsunami-wave energy on the continental shelf off the Makran coast and that these coastally-trapped edge waves were trapped in the along-shore direction within a ∼300-km stretch of the continental shelf. Sensitivity experiments establish that this along-shore trapping of the tsunami energy is due to variations in the shelf width. In addition, the model simulation indicates that the reported long duration of sea-level oscillations at Port Victoria were mainly due to trapping of the tsunami energy over the large shallow region surrounding the Seychelles archipelago.  相似文献   
6.
The use of wavelet transforms is explored to investigate the nonlinear dynamical characteristics of ship roll and coupled heave-roll motion. The harmonic character, double period character and chaotic character are observed via a time–frequency window of the wavelet transform. Typical wave parameters in different stability regions are considered. Features such as restoring rolling, divergence rolling, steady state and chaotic responses of ship roll are obtained as well. The investigation in this paper not only highlights the feasibility of using wavelet transforms in the analysis of nonlinear dynamic characteristics of ship rolling in waves, but also shows how it could enhance the analysis abilities.  相似文献   
7.
A new active gyrostabiliser system for ride control of marine vehicles   总被引:1,自引:0,他引:1  
A new gyroscopic method of active ride control on marine vehicles is presented. Gyroscopic stabilisation is selected because it acts entirely within the hull of the vessel while not requiring sufficient movable weight to generate control moments. The new approach is capable of generating greater stabilising moments than existing gyroscopic systems. Physical experiments, using a modulation theory approach, on a ship model practically demonstrate that the specified system is capable of providing levels of ride control comparable with existing systems. Theoretical estimates of the system on full-scale vessels demonstrate its practical feasibility for application on small and medium sized vessels.  相似文献   
8.
The purpose of this paper is to investigate the static structural response of a new type of composite stiffener containing a viscoelastic insert. The introduction of this material has proven benefits in terms of noise and vibration attenuation across the joint. House, 1997 describes the use of this material in sonar dome/hull connections — equipment sensitive to noise and vibration. Structural stiffeners incorporating this material would have positive implications for not only marine and ocean structures but for structural applications in general. The effects of introducing this new material on the structural response of the joint are numerically examined by using a progressive damage model. Application of this method allows the initiation and progression of failure and ultimate failure load to be predicted. Experimental results show good qualitative and quantitative agreement with the predictive damage model.  相似文献   
9.
10.
Afroosa  M.  Rohith  B.  Paul  Arya  Durand  Fabien  Bourdallé-Badie  Romain  Joseph  Sudheer  Prerna  S.  Shenoi  S. S. C. 《Ocean Dynamics》2022,72(7):523-538
Ocean Dynamics - An intraseasonal see-saw has been observed in the Indo-Pacific barotropic sea level anomaly during boreal winters. This see-saw carries a significant amount of energy and is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号