首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地球物理   4篇
天文学   3篇
  2018年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1991年   2篇
排序方式: 共有7条查询结果,搜索用时 171 毫秒
1
1.
Changes in total geomagnetic field intensity, of 2–3 nT, were observed prior to the 1995 Hyogo-ken Nanbu (Kobe) earthquake at the Amagase (AMG) site, located approximately 70 km from the epicenter. We examined whether the observed variations are local signals arising from the Earth's crust, or global variations that are unlikely to originate from the crust. To remove global-scale variations in total geomagnetic intensity data, we employed a regional geomagnetic field model. Using data recorded at five reference sites in Japan, we estimated global-scale variations in total geomagnetic intensity, and removed them from the observed total geomagnetic intensity at the AMG site. The reminder still showed variations during the period prior to the Kobe earthquake. In addition, these pre-seismic variations include two of the largest shifts recorded during the entire observation period at the AMG site, raising the possibility that these variations were indeed related to the earthquake. These variations cannot be interpreted as signals arising from the area close to the seismic source because of the large distance between the epicenter and the site. Therefore, our results raise the possibility that the physical state of the Earth's crust shows marked changes over a wide region in the lead-up to a seismic event.  相似文献   
2.
As a first step toward describing water flow processes in bedrock, a coil‐type time domain reflectometry (TDR) probe capable of measuring volumetric water content, θ, in weathered bedrock at three depths was prepared. Because the coil‐type TDR probe is large in diameter (19 mm), it can be installed even in highly weathered bedrock more easily and appropriately than conventional TDR probes that consists of two or three rods of small diameter (5‐8 mm). The probe calibrations suggest that the values measured by the probe are very sensitive to changes in θ. Using the calibrated probe together with commercially available profile soil moisture sensors, the θ profile was monitored for 1 year. Even rainfall events with relatively small cumulative rainfall of 15 mm increased the bedrock θ, and the increments were comparable to those in the soil. After the end of the rainfall events, the bedrock θ displayed a more rapid drop than the soil, and varied little during the period of no rainfall. The water storage showed similar tendencies. These observations suggest that the bedrock θ is controlled by clearly distinguishable macropores and micropores within the bedrock. It is concluded that the coil‐type TDR probe is very effective in determining θ in weathered bedrock, and that bedrock, conventionally defined by conducting cone penetration tests and treated as impermeable, does conduct and hold substantial amounts of water, and therefore contribute greatly to hydrological processes in headwater catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
3.
We have modeled the solar coronal active loop heating by discrete Alfvén waves. Discrete Alfvén waves (DAW) are a new class of Alfvén waves which can be described by the two-fluid model with finite ion-cyclotron frequency, or the MHD model with plasma current along the magnetic field line as shown by Appert, Vaclavik, and Villar (1984). We have modeled the coronal loop as a semi-toroidal plasma with the major toroidal radius much larger than the plasma radius. We have shown that the absorption of discrete Alfvén waves by the plasma through viscosity can account for at least 30% of the coronal heating rate density of 10–4 J m–3 s–1.  相似文献   
4.
Magnetotelluric (MT) measurements were conducted at Iwate volcano, across the entirety of the mountain, in 1997, 1999, 2003, 2006, and 2007. The survey line was 18 km in length and oriented E–W, comprising 38 measurements sites. Following 2D inversion, we obtained the resistivity structure to a depth of 4 km. The surface resistive layer (~ several hundreds of meters thick) is underlain by extensive highly conductive zones. Based on drilling data, the bottom of the highly conductive zone is interpreted to represent the 200 °C isotherm, below which (i.e., at higher temperatures) conductive clay minerals (smectite) are rare. The high conductivity is therefore mainly attributed to the presence of hydrothermally altered clay. The focus of this study is a resistive body beneath the Onigajo (West-Iwate) caldera at depths of 0.5–3 km. This body appears to have impeded magmatic fluid ascent during the 1998 volcanic unrest, as inferred from geodetic data. Both tectonic and low-frequency earthquakes are sparsely distributed throughout this resistive body. We interpret this resistive body as a zone of old, solidified intrusive magma with temperatures in excess of 200 °C. Given that a similar relationship between a resistive body and subsurface volcanic activity has been suggested for Asama volcano, structural controls on subsurface magmatic fluid movement may be a common phenomenon at shallow levels beneath volcanoes.  相似文献   
5.
It is shown that sheared electron flows can generate long as well as short wavelength (in comparison with the ion gyroradius) electrostatic waves in a nonuniform magnetplasma. For this purpose, we derive dispersion relations by employing two-fluid and hybrid models; in the two-fluid model the dynamics of both the electrons and ions are governed by the hydrodynamic equations and the guiding center fluid drifts, whereas the hybrid model assumes kinetic ions and fluid electrons. Explicit expressions for the growth rates and thresholds are presented. Linearly excited waves attain finite amplitudes and start interacting among themselves. The interaction is governed by the nonlinear equations containing the Jacobian nonlinearities. Stationary solutions of the nonlinear mode coupling equations can be represented in the form of a dipolar vortex and a vortex street. Conditions under which the latter arise are given. Numerical results for the growth rates of linearly excited modes as well as for various types of vortices are displayed for the parameters that are relevant for the F-region of the Earth's ionosphere. It is suggested that the results of the present investigation are useful in understanding the properties of nonthermal electrostatic waves and associated nonlinear vortex structures in the Earth's ionosphere.  相似文献   
6.
It is shown that a discrete Alfvén wave can explain the natural oscillations of solar loop prominences by considering the existence of a current flow. Discrete Alfvén waves are a new class of Alfvén waves which is described by the inclusion of the finite ion cyclotron frequency (/ cl 0) and/or the equilibrium plasma current. In this paper we consider only the effect of the current since in solar prominences (/ cl 0). We have modeled the solar prominences as a cylindrical plasma, surrounded by vacuum (corona), with L a where L and a are the plasma column, length, and radius, respectively. We have calculated the spectrum of the discrete Alfvén waves as function of the magnitude and shape of the plasma current.  相似文献   
7.
Melt‐origin pseudotachylyte is the most reliable seismogenic fault rock. It is commonly believed that pseudotachylyte generation is rare in the plate subduction zone where interstitial fluids are abundant and can trigger dynamic fault‐weakening mechanisms such as thermal pressurization. Some recent studies, however, have discovered pseudotachylyte‐bearing faults in exhumed ancient accretionary complexes, indicating that frictional melting also occurrs during earthquakes in subduction zones. To clarify the pseudotachylyte generation mechanism and the variation of slip behavior in the plate subduction zone, a pseudotachylyte found in the exhumed fossil accretionary complex (the Shimanto Belt, Nobeoka, Japan) was re‐focused and microscopic and three‐dimensional observations of the pseudotachylyte‐bearing fault were performed based on optical, electron, and X‐ray microscope images. Based on the patterns contained in the fragment, the pseudotachylyte is divided into four domains, although no clear domain boundaries or layering structures are not found. Three‐dimensional observation also suggests that the pseudotachylyte were fragmented or isolated by cataclasite or carbonate breccia. The pseudotachylyte was rather injected into the surrounding carbonate breccia, which is composed of angular fragments of the host rock and a matrix of tiny crystalline carbonate. The pseudotachylyte volume was extracted from the X‐ray microscope image and the heat abundance consumed by the pseudotachylyte generation was estimated at 2.18 MJ/m2, which can be supplied during a slip of approximately 0.5 m. These observations and calculations, together with the results of the previous investigations, suggest hydrofracturing and rapid carbonate precipitation that preceded or accompanied the frictional melting. Dynamic hydrofracturing during a slip can be caused by rapid fluid pressurization, and can induce abrupt decrease in fluid pressure while drastically enhancing the shear strength of the shear zone. Consequently, frictional heating would be reactivated and generate the pseudotachylyte. These deformation processes can explain pseudotachylyte generation in hydrous faults with the impermeable wall rock.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号