首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2008年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Several independent indicators imply a high probability of a great (M > 8) earthquake rupture of the subduction megathrust under the Mentawai Islands of West Sumatra. The human consequences of such an event depend crucially on its tsunamigenic potential, which in turn depends on unpredictable details of slip distribution on the megathrust and how resulting seafloor movements and the propagating tsunami waves interact with bathymetry. Here we address the forward problem by modelling about 1000 possible complex earthquake ruptures and calculating the seafloor displacements and tsunami wave height distributions that would result from the most likely 100 or so, as judged by reference to paleogeodetic data. Additionally we carry out a systematic study of the importance of the location of maximum slip with respect to the morphology of the fore-arc complex. Our results indicate a generally smaller regional tsunami hazard than was realised in Aceh during the December 2004 event, though more than 20% of simulations result in tsunami wave heights of more than 5 m for the southern Sumatran cities of Padang and Bengkulu. The extreme events in these simulations produce results which are consistent with recent deterministic studies. The study confirms the sensitivity of predicted wave heights to the distribution of slip even for events with similar moment and reproduces Plafker's rule of thumb. Additionally we show that the maximum wave height observed at a single location scales with the magnitude though data for all magnitudes exhibit extreme variability. Finally, we show that for any coastal location in the near field of the earthquake, despite the complexity of the earthquake rupture simulations and the large range of magnitudes modelled, the timing of inundation is constant to first order and the maximum height of the modelled waves is directly proportional to the vertical coseismic displacement experienced at that point. These results may assist in developing tsunami preparedness strategies around the Indian Ocean and in particular along the coasts of western Sumatra.  相似文献   
2.
We use SPOT image pairs to determine horizontal offsets associated with the Mw 7.9 November 2002 Denali earthquake in the vicinity of Slate Creek, AK. Field measurements and aerial photographs are used to further characterize the geometry of the surface rupture. Aerial photographs show that shear localization occurs where the rupture trace is linear, and distributed off-fault deformation is common at fault bends and step-overs, or at geologic contacts between rock, glacial sediments, and ice. The displacement field is generated using a sub-pixel cross correlation technique between SPOT images taken before and after the earthquake. We identify the effects of glacier motion in order to isolate the tectonic displacements associated with the Denali earthquake. The resulting horizontal displacement field shows an along-strike variation in dextral shear, with a maximum of approximately 7.5 m in the east near 144° 52′W, which decreases to about 5 m to the west near 145° 45′W. If the November 2002 earthquake represents the long-term behavior of the Denali fault, it implies a westward decrease in the long-term dextral slip rate. A possible mechanism to accommodate the westward decreasing slip on the Denali fault is to transfer fault slip to adjacent east-trending contractional structures in the western region of the central Alaskan Range.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号