首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
大气科学   2篇
地球物理   14篇
地质学   25篇
海洋学   3篇
天文学   1篇
自然地理   1篇
  2024年   1篇
  2022年   4篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   2篇
  2017年   7篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
Geotechnical and Geological Engineering - An analytical model defining soil-foundation probability of failure with respect to total system stability was developed in the present study. Soil...  相似文献   
2.
Moghim  Sanaz  Jahangir  Mohammad Sina 《Natural Hazards》2022,112(2):1503-1525
Natural Hazards - Extreme weather events such as heat waves and cold spells affect people’s lives. This study develops a probabilistic framework to evaluate heat waves and cold spells. As...  相似文献   
3.
4.
Natural Resources Research - The northwest of Iran is considered as a promising geothermal zone owing to its geographical properties, tectonic features, and thermal activities, particularly in...  相似文献   
5.
Eccentrically braced frames (EBFs) can be repaired after a major earthquake by replacing the links. The link replacement is not a straightforward process and is influenced by the type of the link and the amount of residual frame deformations. The past decade has witnessed the development of different types of replaceable links such as end-plated links, web connected links, bolted flange and web spliced links, and collector beam and brace spliced links. All of the developed replaceable link details, except the web connected links, are not suitable for link replacement under residual frame drift. In this paper, a detachable replaceable link detail which is based on splicing the link at its mid-length is proposed. The detail is well suited for installation under residual frame drifts. In addition, the weight and size of the members to be transported and erected are reduced significantly, thereby facilitating the replacement procedure. Performance of this proposed replaceable link is studied by conducting six nearly full scale EBF tests under quasi-static cyclic loading. The link length ratio, type of end-plated mid-splice connection, and the amount of residual drift are considered as test variables. The test results revealed that the inelastic rotation capacity of the detachable replaceable links exceeds the requirements of the AISC Seismic Provisions for Structural Steel Buildings. No failures are observed in the end-plated mid-splice connections demonstrating the potential of the proposed details. The detachable replaceable links are investigated by numerical analysis as well to further validate their applicability and to develop design recommendations.  相似文献   
6.
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.  相似文献   
7.
Salinization of land and water is a significant challenge in most continents and particularly in arid and semi-arid regions. The need to accurately forecast surface and groundwater interactions has promoted the use of physically-based numerical modelling approaches in many studies. In this regard, two issues can be considered as the main research challenges. First, in contrast with surface water, there is generally less observed level and salinity data available for groundwater systems. These data are critical in the validation and verification of numerical models. The second challenge is to develop an integrated surface-groundwater numerical model that is capable of salt mobilization modelling but which can be validated and verified against accurate observed data. This paper reviews the current state of understanding of groundwater and surface water interactions with particular respect to the numerical modelling of salt mobilization. 3D physically-based fully coupled surface-subsurface numerical model with the capability of modelling density-dependent, saturated-unsaturated solute transport is an ideal tool for groundwater-surface water interaction studies. It is concluded that there is a clear need to develop modelling capabilities for the movement of salt to, from, and within wetlands to provide temporal predictions of wetland salinity which can be used to assess ecosystem outcomes.  相似文献   
8.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   
9.
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin–Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号