首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  2021年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Vennell  Ross  Scheel  Max  Weppe  Simon  Knight  Ben  Smeaton  Malcolm 《Ocean Dynamics》2021,71(4):423-437
Ocean Dynamics - Lagrangian particle tracking, based on currents derived from hydrodynamic models, is an important tool in quantifying bio-physical transports in the ocean. Particle tracking in the...  相似文献   
2.
Globally arsenic (As) is a ubiquitous trace element derived from the natural weathering of As-bearing rock. With the onset of reducing conditions, the prevalence of aqueous As(III) may be intensified through biotic and abiotic processes. Here we evaluate the stability of arsenic bearing Ca–Fe hydroxide phases collected from exposed tailings at Ketza River mine, Yukon, Canada, during the reductive dissolution of both acid treated and untreated samples by Shewanella putrefaciens 200R and Shewanella sp. ANA-3. Samples were acid treated in order to remove Ca–Fe oxide coatings and evaluate the influence of these coatings on the rates of microbial Fe(III) and As(V) reduction. Environmental scanning electron microscope (ESEM) micrographs of the solid phase show significant differences in the chemistry and physical morphology of the material by the bacteria over time and are especially evident in the acid treated samples. Moreover, while solution chemistry showed similar As(III) respiration rates of the inoculated acid treated samples for both ANA3 and 200R at ~ 1.1 × 10−6 μM·s− 1·m− 2, the Fe(II) respiration rates differed at 1.4 × 10− 7 and 9.5 × 10− 8 μM·s− 1·m−2 respectively, thus suggesting strain specific metal reduction metabolic pathways Additionally, the enhanced metal reduction observed in the acid treated inoculated samples suggests that the presence of the Ca–Fe hydroxide phase in the untreated samples acted as a barrier, inhibiting the bacteria from accessing the metals. This has implications for increased mobilization of metals by metal reducing bacteria within areas of increased acidity, such as acid mine drainage sites and industrial tailings ponds that can come into contact with surface and ground water sources.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号