首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   8篇
天文学   4篇
自然地理   2篇
  2020年   1篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2009年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有17条查询结果,搜索用时 46 毫秒
1.
2.
The accuracy of classification of the Spectral Angle Mapping (SAM) is warranted by choosing the appropriate threshold angles, which are normally defined by the user. Trial‐and‐error and statistical methods are commonly applied to determine threshold angles. In this paper, we discuss a real value–area (RV–A) technique based on the established concentration–area (C–A) fractal model to determine less biased threshold angles for SAM classification of multispectral images. Short wave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images were used over and around the Sar Cheshmeh porphyry Cu deposit and Seridune porphyry Cu prospect. Reference spectra from the known hydrothermal alteration zones in each study area were chosen for producing respective rule images. Segmentation of each rule image resulted in a RV–A curve. Hydrothermal alteration mapping based on threshold values of each RV–A curve showed that the first break in each curve is practical for selection of optimum threshold angles. The hydrothermal alteration maps of the study areas were evaluated by field and laboratory studies including X–ray diffraction analysis, spectral analysis, and thin section study of rock samples. The accuracy of the SAM classification was evaluated by using an error matrix. Overall accuracies of 80.62% and 75.45% were acquired in the Sar Cheshmeh and Seridune areas, respectively. We also used different threshold angles obtained by some statistical techniques to evaluate the efficiency of the proposed RV–A technique. Threshold angles provided by statistical techniques could not enhance the hydrothermal alteration zones around the known deposits, as good as threshold angles obtained by the RV–A technique. Since no arbitrary parameter is defined by the user in the application of the RV‐A technique, its application prevents introduction of human bias to the selection of optimum threshold angle for SAM classification.  相似文献   
3.
The Ayopaya province in the eastern Andes of Bolivia, 100 km NW of Cochabamba, hosts a Cretaceous alkaline rock series within a Palaeozoic sedimentary sequence. The alkaline rock association comprises nepheline-syenitic/foyaitic to ijolitic intrusions, carbonatite, kimberlite, melilititic, nephelinitic to basanitic dykes and diatremes, and a variety of alkaline dykes. The carbonatites display a wide petrographic and geochemical spectrum. The Cerro Sapo area hosts a small calciocarbonatite intrusion and a multitude of ferrocarbonatitic dykes and lenses in association with a nepheline-syenitic stock. The stock is crosscut by a spectacular REE-Sr-Th-rich sodalite-ankerite-baryte dyke system. The nearby Chiaracke complex represents a magnesiocarbonatite intrusion with no evidence for a relationship to igneous silicate rocks. The magnesiocarbonatite ( REE up to 1.3 wt%) shows strong HREE depletion, i.e. unusually high La/Yb ratios (520–1,500). Calciocarbonatites ( REE up to 0.5 wt%) have a flatter REE distribution pattern (La/Yb 95–160) and higher Nb and Zr contents. The sodalite-ankerite-baryte dyke system shows geochemical enrichment features, particularly in Na, Ba, Cl, Sr, REE, which are similar to the unusual natrocarbonatitic lavas of the recent volcano of Oldoinyo Lengai, Tanzania. The Cerro Sapo complex may be regarded as an intrusive equivalent of natrocarbonatitic volcanism, and provides an example for carbonatite genesis by late-stage crystal fractionation and liquid immiscibility. The magnesiocarbonatite intrusion of Chiaracke, on the other hand, appears to result from a primary carbonatitic mantle melt. Deep seated mantle magmatism/metasomatism is also expressed by the occurrence of a kimberlite dyke. Neodymium and strontium isotope data (Nd 1.4–5.4, 87Sr/86 Sr<Bulk Earth) indicate a depleted mantle source for the alkaline magmatism. The magmatism of the Ayopaya region is attributed to failed rifting of western South America during the Mesozoic and represents the only occurrence of carbonatite and kimberlite rocks in the Andes.  相似文献   
4.
Geological studies indicate that the southeastern Sanandaj–Sirjan Zone, located in the southeastern Zagros Orogenic Belt, is subdivided transversally into the Esfahan–Sirjan Block with typical Central Iranian stratigraphic features and the Shahrekord–Dehsard Terrane consisting of Paleozoic and Lower Mesozoic metamorphic rocks. The Main Deep Fault (Abadeh Fault) is a major lithospheric fault separating the two parts. The purpose of this paper is to clarify the role of the southeastern Sanandaj–Sirjan Zone in the tectonic evolution of the southeastern Zagros Orogenic Belt on the basis of geological evidence. The new model implies that Neo‐Tethys 1 came into being when the Central Iran Microcontinent split from the northeastern margin of Gondwana during the Late Carboniferous to Early Permian. During the Late Triassic a new spreading ridge, Neo‐Tethys 2, was created to separate the Shahrekord–Dehsard Terrane from Afro–Arabian Plate. The Zagros sedimentary basin was formed on a continental passive margin, southwest of Neo‐Tethys 2. The two ophiolitic belts of Naien–Shahrebabak–Baft and Neyriz were developed to the northeast of Neo‐Tethys 1 and southwest of Neo‐Tethys 2 respectively, related to the sinking of the lithosphere of the Neo‐Tethys 1 in the Late Cretaceous. It can be concluded that deposition of the Paleocene conglomerate on the Central Iran Microcontinent and Pliocene conglomerate in the Zagros Sedimentary Basin is directly linked to the uplift generated by collision.  相似文献   
5.
The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.  相似文献   
6.
7.
For the very first time, the mesoscale circulation patterns and synoptic-dynamic structure of the atmospheric systems that led to the dust emission to the south coast region of Caspian Sea (SCRCS) were identified and classified using the region synoptic stations’ observations of 2005–2013. Satellite measurements and images, NCEP/NCAR reanalysis data, and Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-CHEM) model products were also used in this study. Results showed that in 49 % of cases, cyclonic circulations over the Middle East deserts were the main transporter of dust particles into the atmosphere where then transferred to the SCRCS by southerly winds over the Alborz mountains in the lower troposphere and by westerly waves in the middle and upper troposphere. During the warm seasons, the surface heating lead to the development of mesoscale thermal low pressures over the hot deserts on the eastern regions of the Caspian Sea, like Turkmenistan and Qura Qum. Those heat lows were responsible for the 38 % of the occurred events. Turbulence and instabilities in the lower troposphere were identified as the second important dust emitter to the atmosphere where those dust particles transported to the SCRCS with the strong northeasterly wind. The third pattern by 13 % of cases was belonging to the mesoscale thermal low pressure that was developed over the arid regions of Iran like Dasht-é-Kavir. Because of the nature of the turbulence in the lower troposphere and heat lows, the ascent of dust particles by these two mechanisms was limited to a shallow layer in the troposphere. The results of simulation with the WRF-CHEM model, analysis of moderate resolution imaging spectroradiometer (MODIS) images, and spatial zoning of atmospheric optical depth (AOD) confirmed the results of the synoptic study.  相似文献   
8.
Information extraction from processed remotely sensed images, in the case of missing initial spectra of pixels, can be a challenge for the users. In such situations, application of conventional methods based on spectral properties of pixels is impractical. We took advantage of the fractal theory for image segmentation of a principal component (PC) image for hydrothermal alteration mapping. The selected input images included short wave infrared bands of ASTER imagery covering the Darrehzar porphyry copper mine and surrounding areas with well-known hydrothermal alteration zones. Hydrothermal alteration like other geological processes can show spatial distribution with fractal properties. Principal component analysis was used to enhance hydrothermal alteration associated with the Darrehzar porphyry copper deposit. None of the resulting PCs were appropriate to portray clearly important alteration types in the study area. The PC1 image, which contains more than 98% of variance of the input bands, was selected for image segmentation using a digital number–area technique based on the established concentration–area fractal model. This technique was proposed based on frequency distributions and spatial correlation and variability of pixel values. The resulting hydrothermal alteration map indicates intense phyllic, weak phyllic, and propylitic as the main alteration types exposed at the surface of the Darrehzar area. In addition, the proposed technique delineated the phyllic zone in the exposed mine pit and a transition zone between inner phyllic and surrounding propylitic alteration zones. Field investigation and sampling in 23 locations including spectral measurements, XRD and thin section studies, confirmed the accuracy of the classified image by the proposed technique.  相似文献   
9.
10.
The main aim of microlensing experiments is to evaluate the mean mass of massive compact halo objects (MACHOs) and the mass fraction of the Galactic halo made by this type of dark matter. Statistical analysis shows that by considering a Dirac-Delta mass function (MF) for the MACHOs, their mean mass is about that of a white dwarf star. This result is, however, in discrepancy with other observations such as those of non-observed expected white dwarfs in the Galactic halo which give rise to metal abundance, polluting the interstellar medium by their evolution. Here we use the hypothesis of the spatially varying MF of MACHOs, proposed by Kerins and Evans to interpret microlensing events. In this model, massive lenses with a lower population contribute to the microlensing events more frequently than do dominant brown dwarfs. This effect causes the mean mass of the observed lenses to be larger than the mean mass of all the lenses. A likelihood analysis is performed to find the best parameters of the spatially varying MF that are compatible with the duration distribution of Large Magellanic Cloud microlensing candidates of the MACHO experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号