首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   2篇
地质学   9篇
自然地理   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  2001年   2篇
  1997年   1篇
  1996年   1篇
  1971年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
This study presents a review of published geological data, combined with original observations on the tectonics of the Simplon massif and the Lepontine gneiss dome in the Western Alps. New observations concern the geometry of the Oligocene Vanzone back fold, formed under amphibolite facies conditions, and of its root between Domodossola and Locarno, which is cut at an acute angle by the Miocene, epi- to anchizonal, dextral Centovalli strike-slip fault. The structures of the Simplon massif result from collision over 50 Ma between two plate boundaries with a different geometry: the underthrusted European plate and the Adriatic indenter. Detailed mapping and analysis of a complex structural interference pattern, combined with observations on the metamorphic grade of the superimposed structures and radiometric data, allow a kinematic model to be developed for this zone of oblique continental collision. The following main Alpine tectonic phases and structures may be distinguished:
1.  NW-directed nappe emplacement, starting in the Early Eocene (~50 Ma);
2.  W, SW and S-verging transverse folds;
3.  transpressional movements on the dextral Simplon ductile shear zone since ~32 Ma;
4.  formation of the Bergell – Vanzone backfolds and of the southern steep belt during the Oligocene, emplacement of the mantle derived 31–29 Ma Bergell and Biella granodiorites and porphyritic andesites as well as intrusions of 29–25 Ma crustal aplites and pegmatites;
5.  formation of the dextral discrete Rhone-Simplon line and the Centovalli line during the Miocene, accompanied by the pull-apart development of the Lepontine gneiss dome – Dent Blanche (Valpelline) depression.
It is suggested that movements of shortening in fan shaped NW, W and SW directions accompanied the more regular NW- to WNW-directed displacement of the Adriatic indenter during continental collision.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Editorial Handling: Stefan Bucher  相似文献   
2.
—?We test how well low-magnitude (m bLg 1.8 to 2.6), 25-ton chemical explosions at Balapan, Kazakhstan, can be located using IMS stations and standard earth models, relying on precisely determined relative arrival times of nearly similar, regional and teleseismic waveforms. Three 1997 Balapan explosions were recorded by a number of currently reporting and surrogate IMS stations. Three regional stations and two teleseismic arrays yielded consistent waveforms appropriate for relative picking. Master-event locations based on the AK135 model and ground-truth information from the first, shallowest and best-recorded explosion, fell under 1 km from known locations, for depths constrained to that of the master event. The resulting 90% confidence ellipses covered 12–13?km2 and contained the true locations; however, results for depth constrained to true depth were slightly less satisf actory. From predictions based on ground truth, we found a P g -coda phase at Makanchi, Kazakhstan to be misidentified and poorly modeled. After accounting for this, 90% ellipses shrank to 2–3?km2 and true-depth mislocation vectors became more consistent with confidence-ellipse orientations. These results suggest that a high level of precision could be provided by a tripartite array of calibration shots in cases where models are poorly known. We hope that the successful relocation of these small Balapan shots will support the role of calibration explosions in verification monitoring and special event studies, including on-site inspection.  相似文献   
3.
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) – Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48–40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40–30 Ma in the Tso Morari dome (northern section of the transect) and by 30–20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene.High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10 km) between 20 and 6 Ma, while its southern front reached this depth at 10–5 Ma.  相似文献   
4.
The Lepontine dome represents a unique region in the arc of the Central and Western Alps, where complex fold structures of upper amphibolite facies grade of the deepest stage of the orogenic belt are exposed in a tectonic half-window. The NW-verging Mont Blanc, Aar und Gotthard basement folds and the Lower Penninic gneiss nappes of the Central Alps were formed by ductile detachment of the upper European crust during its Late Eocene–Early Oligocene SE-directed underthrust below the upper Penninic and Austroalpine thrusts and the Adriatic plate. Four underthrust zones are distinguished in the NW-verging stack of Alpine fold nappes and thrusts: the Canavese, Piemont, Valais and Adula zones. Up to three schistosities S1–S3, folds F1–F3 and a stretching lineation XI with top-to-NW shear indicators were developed in the F1–F3 fold nappes. Spectacular F4 transverse folds, the SW-verging Verzasca, Maggia, Ziccher, Alpe Bosa and Wandfluhhorn anticlines and synclines overprint the Alpine nappe stack. Their formation under amphibolite facies grade was related to late ductile folding of the southern nappe roots during dextral displacement of the Adriatic indenter. The transverse folding F4 was followed since 30 Ma by the pull-apart exhumation and erosion of the Lepontine dome. This occurred coevally with the formation of the dextral ductile Simplon shear zone, the S-verging backfolding F5 and the formation of the southern steep belt. Exhumation continued after 18 Ma with movement on the brittle Rhone-Simplon detachment, accompanied by the N-, NW- and W-directed Helvetic and Dauphiné thrusts. The dextral shear is dated by the 29–25 Ma crustal-derived aplite and pegmatite intrusions in the southern steep belt. The cooling by uplift and erosion of the Tertiary migmatites of the Bellinzona region occurred between 22 and 18 Ma followed by the exhumation of the Toce dome on the brittle Rhone–Simplon fault since 18 Ma.  相似文献   
5.
The formation and structural evolution of the Jungfrau syncline is described, based on excellent outcrops occurring in the Lötschental, in the Central Alps of Switzerland. The quality of the outcrops allows us to demonstrate that the External Massifs of the Swiss Alps have developed due to internal folding. The Jungfrau syncline, which separates the autochtonous Gastern dome from the Aar massif basement gneiss folds, is composed of slivers of basement rocks with their Mesozoic sedimentary cover. In the Inner Faflertal, a side valley of the Lötschental, the 200 m thick syncline comprises four units, the Gastern massif with a reduced Mesozoic sedimentary cover in a normal stratigraphic succession, two units of overturned basement rocks with their Mesozoic sedimentary cover, and the overturned lower limb of the Tschingelhorn gneiss fold of the Aar massif with lenses of its sedimentary cover. Stratigraphy shows that the lower units, related to the Gastern massif, are condensed and that the upper units, deposited farther away from a Gastern paleo-high, form a more complete sequence, linked to the Doldenhorn Meso-Cenozoic basin fill. The integration of these local observations with published regional data leads to the following model. On the northern margin of the Doldenhorn basin, at the northern fringe of the Alpine Tethys, the pre-Triassic crystalline basement and its Mesozoic sedimentary cover were folded by ductile deformation at temperatures above 300 °C and in the presence of high fluid pressures, as the Helvetic and Penninic nappes were overthrusted towards the northwest during the main Alpine deformation phase. The viscosity contrast between the basement gneisses and the sediments caused the formation of large basement anticlines and tight sedimentary synclines (mullion-type structures). The edges of basement blocks bounded by pre-cursor SE-dipping normal faults at the northwestern border of the Doldenhorn basin were deformed by simple shear, creating overturned slices of crystalline rocks with their sedimentary cover in what now forms the Jungfrau syncline. The localisation of ductile deformation in the vicinity of pre-existing SE-dipping faults is thought to have been helped by the circulation of fluids along the faults; these fluids would have been released from the Mesozoic sediments by metamorphic dehydration reactions accompanied by creep and dynamic recrystallisation of quartz at temperatures above 300 °C. Quantification of the deformation suggests a strain ellipsoid with a ratio (1+ e1 / 1+ e3) of approximately 1000. The Jungfrau syncline was deformed by more brittle NW-directed shear creating well-developed shear band cleavages at a late stage, after cooling by uplift and erosion. It is suggested that the external massifs of the Alps are basement gneiss folds created at temperatures of 300 °C by detachment through ductile deformation of the upper crust of the European plate as it was underthrusted below the Adriatic plate.  相似文献   
6.
 The highest grade of metamorphism and associated structural elements in orogenic belts may be inherited from earlier orogenic events. We illustrate this point using magmatic and metamorphic rocks from the southern steep belt of the Lepontine Gneiss Dome (Central Alps). The U-Pb zircon ages from an anatectic granite at Verampio and migmatites at Corcapolo and Lavertezzo yield 280–290 Ma, i.e., Hercynian ages. These ages indicate that the highest grade of metamorphism in several crystalline nappes of the Lepontine Gneiss Dome is pre-Alpine. Alpine metamorphism reached sufficiently high grade to reset the Rb-Sr and K-Ar systematics of mica and amphibole, but generally did not result in crustal melting, except in the steep belt to the north of the Insubric Line, where numerous 29 to 26 Ma old pegmatites and aplites had intruded syn- and post-kinematically into gneisses of the ductile Simplon Shear Zone. The emplacement age of these pegmatites gives a minimum estimate for the age of the Alpine metamorphic peak in the Monte Rosa nappe. The U-Pb titanite ages of 33 to 31 Ma from felsic porphyritic veins represent a minimum-age estimate for Alpine metamorphism in the Sesia Zone. A porphyric vein emplaced at 448±5 Ma (U-Pb monazite) demonstrates that there existed a consolidated Caledonian basement in the Sesia Zone. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   
7.
Improving Regional Seismic Event Location in China   总被引:1,自引:0,他引:1  
—?In an effort to improve our ability to locate seismic events in China using only regional data, we have developed empirical propagation path corrections and applied such corrections using traditional location routines. Thus far, we have concentrated on corrections to observed P arrival times for crustal events using travel-time observations available from the USGS Earthquake Data Reports, the International Seismic Centre Bulletin, the preliminary International Data Center Reviewed Event Bulletin, and our own travel-time picks from regional data. Location ground truth for events used in this study ranges from 25?km for well-located teleseimic events, down to 2?km for nuclear explosions located using satellite imagery. We also use eight events for which depth is constrained using several waveform methods. We relocate events using the EvLoc algorithm from a region encompassing much of China (latitude 20°–55°N; longitude 65°–115°E). We observe that travel-time residuals exhibit a distance-dependent bias using IASPEI91 as our base model. To remedy this bias, we have developed a new 1-D model for China, which removes a significant portion of the distance bias. For individual stations having sufficient P-wave residual data, we produce a map of the regional travel-time residuals from all well-located teleseismic events. Residuals are used only if they are smaller than 10?s in absolute value and if the seismic event is located with accuracy better than 25?km. From the residual data, correction surfaces are constructed using modified Bayesian kriging. Modified Bayesian kriging offers us the advantage of providing well-behaved interpolants and their errors, but requires that we have adequate error estimates associated with the travel-time residuals from which they are constructed. For our P-wave residual error estimate, we use the sum of measurement and modeling errors, where measurement error is based on signal-to-noise ratios when available, and on the published catalog estimate otherwise. Our modeling error originates from the variance of travel-time residuals for our 1-D China model. We calculate propagation path correction surfaces for 74 stations in and around China, including six stations from the International Monitoring System. The statistical significance of each correction surface is evaluated using a cross-validation technique. We show relocation results for nuclear tests from the Balapan and Lop Nor test sites, and for earthquakes located using interferometric synthetic aperture radar. These examples show that the use of propagation path correction surfaces in regional relocations eliminates distance bias in the residual curves and significantly improves the accuracy and precision of seismic event locations.  相似文献   
8.
We analyse active-experiment seismic data obtained by the 1993 Jemez Tomography Experiment (JTEX) programme to elucidate the heterogeneous structure of the Jemez volcanic field, which is located at the boundary between the Colorado Plateau and the Rio Grande Rift. Using a single isotropic scattering assumption, we first calculate the envelope Green's functions for the upper and lower crust and the uppermost mantle. By fitting the theoretical envelopes with the observed three-component data, we estimate depth-dependent features of the scattering coefficients around Valles Caldera. We estimate the ratios of scattering coefficients, rather than scattering coefficients themselves, because of the uncertainty of the seismic efficiency of the explosive sources and knowledge of absolute site-amplification factors. The strongest scattering coefficients are observed at a shallow depth beneath the Valles Caldera. This is considered to be related to the complex structure caused by two episodes of caldera formation and the ensuing resurgent uplift in the caldera, etc. The depth-dependent characters of the scattering coefficients for the Colorado Plateau and the Rio Grande Rift are similar to each other: a transparent upper crust and a heterogeneous lower crust (small and large scattering coefficients, respectively). However, the scattering coefficients beneath the Rio Grande Rift are several times larger than those beneath the Colorado Plateau. Depths of the lower crust and the Moho boundary beneath the Rio Grande Rift are shallower than those of the Colorado Plateau. From their geological settings and other geophysical results around the region, we infer that the larger scattering coefficients of the rift are associated with rift formation and volcanic activity, such as magma ascent from the upper mantle to the crust.  相似文献   
9.
10.
Jean-Luc Epard  Albrecht Steck   《Tectonophysics》2008,451(1-4):242-264
A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of > 90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103–50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of > 90 km (> 27 kbar) and temperatures of 500 to 600 °C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 °C/km. An intense schistosity with a W–E oriented stretching lineation L1 and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata–Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L2 and L3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号