首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   2篇
  2018年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
Modern and known-age Pleistocene fluvial sediments were investigated by optical dating of quartz to test the suitability of the approach for dating deposits from the deeply incised Middle Rhine Valley. Samples from modern flood sediments revealed skewed distributions indicating different residual levels of equivalent dose (De) within the different aliquots. Nevertheless, a substantial number of aliquots from the modern deposits reflect De values close to zero. For the Pleistocene samples, optical ages are in general consistent with age control given by the presence of the Laacher See Tephra and radiocarbon dating. However, some samples overestimate the known age by a few thousand years when using the arithmetic mean. This is apparently explained by including aliquots in the determination of mean De where the optical signal was incompletely bleached at deposition. The most difficult issue in this context is identifying a suitable approach that can distinguish between the variability of De due to partial bleaching and microdosimetry. However, even when considering these limitations it appears that optical dating will by a quite suitable method to date Pleistocene sediments from such a complex fluvial environment, especially when focusing on a precision scale beyond a few thousand years.  相似文献   
2.
Abstract. The Yuryang gold deposit, comprising a Te‐bearing Au‐Ag vein mineralization, is located in the Cheonan area of the Republic of Korea. The deposit is hosted in Precambrian gneiss and closely related to pegmatite. The mineralized veins display massive quartz textures, with weak alteration adjacent to the veins. The ore mineralization is simple, with a low Ag/Au ratio of 1.5:1, due to the paucity of Ag‐phases. Ore mineralization took place in two different mineral assemblages with paragenetic time; early Fe‐sulfide mineralization and late Fe‐sulfide and Au‐Te mineralization. The early Fe‐sulfide mineralization (pyrite + sphalerite) occurred typically along the vein margins, and the subsequent Au‐Te mineralization is characterized by fracture fillings of galena, sphalerite, pyrrhotite, Te‐bearing minerals (petzite, altaite, hessite and Bi‐Te mineral) and electrum. Fluid inclusions characteristically contain CO2 and can be classified into four types (Ia, Ib, IIa and IIb) according to the phase behavior. The pressure corrected temperatures (≥500d?C) indicate that the deposit was formed at a distinctively high temperature from fluids with moderate to low salinity (<12 wt% equiv. NaCl) and CH4 (1?22 mole %). The sphalerite geo‐barometry yield an estimated pressure about 3.5 ?2.1 kbar. The dominant ore‐deposition mechanisms were CO2 effervescence and concomitant H2S volatilization, which triggered sulfidation and gold mineralization. The measured and calculated isotopic compositions of fluids (δ18OH2O = 10.3 to 12.4 %o; δDH2O = ‐52 to ‐77 %o) may indicate that the gold deposition originated from S‐type magmatic waters. The physicochemical conditions observed in the Yuryang gold deposit indicate that the Jurassic gold deposits in the Cheonan area, including the Yuryang gold deposit are compatible with deposition of the intrusion‐related Au‐Te veins from deeply sourced fluids generated by the late Jurassic Daebo magmatism.  相似文献   
3.
正The Precambrian continental nuclei in various parts of the globe preserve the records of important magmatic,metamorphic and tectonic events associated with the secular evolution of the Earth.In this thematic section of"Geoscience Frontiers",we assemble a set of four key papers that address these topics from four key terranes:Western Australia,North China,northwestern India and East Antarctica.  相似文献   
4.
Seon-Gyu  Choi  V. J. Rajesh  Jieun  Seo  Jung-Woo  Park  Chang-Whan  Oh  Sang-Joon  Pak  Sung-Won  Kim 《Island Arc》2009,18(2):266-281
Collision between the North and South China continental blocks began in the Korean peninsula during the Permian (290–260 Ma). The Haemi area in the Hongseong collision belt (proposed as the eastern extension in South Korea of the Dabie–Sulu collision zone of China) within the Gyeonggi Massif comprises post-collisional high Ba–Sr granite with intermediate enclaves that intruded into the Precambrian rocks. The intermediate enclaves have a shoshonitic affinity whereas the granite is a high-K calc-alkaline variety. The chondrite-normalized rare earth element (REE) pattern with relative enrichment of LREE over HREE and absence of a significant negative Eu anomaly typifies both enclaves and granite. Geochemical similarities of enclaves and granite are attributed to the involvement of enriched mantle sources in their genesis. However, dominant crustal components were involved in the formation of high Ba–Sr granites. A granite crystallization age of 233 ± 2 Ma was obtained from SHRIMP U–Pb zircon dating. This age is slightly younger than the Triassic collision event in the Hongseong Belt. Geochemical data, U–Pb zircon age, and regional tectonics indicate that the Haemi high Ba–Sr granite formed in a post-collisional tectonic environment. A Mesozoic post-collisional lithospheric delamination model can account for the genesis of high Ba–Sr granite in the Haemi area.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号