首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   5篇
地质学   12篇
海洋学   2篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2017年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
  1998年   1篇
  1994年   2篇
  1989年   1篇
  1973年   1篇
排序方式: 共有24条查询结果,搜索用时 46 毫秒
1.
The Gihon Spring, Jerusalem, is important for the major monotheistic religions. Its hydrogeology and hydrochemistry is studied here in order to understand urbanization effects on karst groundwater resources, and promote better water management. High-resolution monitoring of the spring discharge, temperature and electrical conductivity, was performed, together with chemical and bacterial analysis. All these demonstrate a rapid response of the spring to rainfall events and human impact. A complex karst system is inferred, including conduit flow, fissure flow and diffuse flow. Electrical conductivity, Na+ and K+ values (2.0 mS/cm, 130 and 50 mg/l respectively) are very high compared to other nearby springs located at the town margins (0.6 mS/cm, 15 and <1 mg/l respectively), indicating considerable urban pollution in the Gihon area. The previously cited pulsating nature of the spring was not detected during the present high-resolution monitoring. This phenomenon may have ceased due to additional water sources from urban leakage and irrigation feeding the spring. The urbanization of the recharge catchment thus affects the spring water dramatically, both chemically and hydrologically. Appropriate measures should therefore be undertaken to protect the Gihon Spring and other karst aquifers threatened by rapid urbanization.  相似文献   
2.
区划是地理学认识地理环境地域分异规律和优化人地关系地域系统结构与功能的有效手段。本文首先借鉴已有研究,对区域生态经济学这门新兴交叉学科及生态经济区划等相关概念进行了界定,明确了生态经济区划原则。其次,通过设计两级生态经济区划方案,首次对中蒙俄三国重要的经济增长轴带“中蒙俄经济走廊”这一国际区域进行了生态经济区划探索研究。基于研究区地貌、气候等自然地理要素以及经济开发强度等人文经济要素,首先将研究区划分为6类生态经济区。通过引入人均环境污染物产生量、土地利用类型、产业结构、人均GDP、城镇化率等具体生态环境和经济社会指标,进一步将研究区细化为19类生态经济亚区。最后,综合对比分析各类生态经济亚区的生态环境与经济社会特征及地域分异规律,贯彻绿色可持续发展理念,将其确定为优化发展区、重点发展区和保育发展区3类,并提出了针对不同类型区的绿色发展建议。本研究将为中蒙俄经济走廊的绿色发展提供科学支撑。  相似文献   
3.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   
4.
The topsoil of clayey slope is easy to erosion because it is weak in its strength, water stability and erosion resistance. A new organic polymer soil stabilizer, which was developed for the stabilization treatment of clay slope topsoil and was named as STW, was introduced in this study. In order to understand the effect of STW on the stabilization of clayey soil, laboratory tests on the unconfined compressive strength, shear strength, water stability and erosion resistance of untreated and treated soil specimens are performed, The results indicated that STW soil stabilizer can significantly increased the unconfined compression strength, shear strength, water stability and erosion resistance of clayey soil. The unconfined compression strength increased with the increasing of curing time and the variation mainly occurs in the first 24-hour. With the addition amounts of STW increasing, the strength, water stability and erosion resistance increased at the curing time being 48 h, but in the case of friction angle, no major change was observed. Based on the scanning electron microscopy (SEM) analysis of the stabilized soil, the stabilization mechanisms of STW soil stabilizer in the clayey soil were discussed. Finally, a field test of the stabilization treatment of clay slope topsoil with STW was carried out, and the results indicated that the STW soil stabilizer on the stabilization treatment of clay slope topsoil is effective for improving the erosion resistance of slope topsoil, reducing the soil loss and protecting the vegetation growth. Therefore, this technique is worth popularizing for the topsoil protection of clay slope.  相似文献   
5.
An innovative approach is presented, in which the discontinuous deformation analysis (DDA) method is used to estimate historic ground motions by back analysis of unique structural failures in archaeological sites. Two archaeological sites in Israel are investigated using this new approach and results are presented in terms of displacement evolution of selected structural elements in the studied masonry structure. The response of the structure is studied up to the point of incipient failure, in a mechanism similar to the one observed in the field. Structural response is found to be very sensitive to dynamic parameters of the loading function such as amplitude and frequency. Prior to back analysis of case studies, two validations are presented. Both compare the performance of DDA with analytical solutions and present strong agreement between the two. Using comprehensive sensitivity analyses, the most likely peak ground acceleration (PGA) and frequency that must have driven the observed block displacements are found for the two case studies—the Nabatean city of Mamshit and the medieval fortress of Nimrod in southern and northern Israel, respectively. It is found that horizontal peak ground accelerations (HPGA) of 0.5g and 1g were required to generate the observed deformations in Mamshit and Nimrod, respectively. Although these might seem too high, considering structural and topographic amplifications it is concluded that the analyses suggest ground motions of 0.2g at a frequency of 1.5 Hz for Mamshit and up to 0.4g at a frequency of 1 Hz for Nimrod. These values provide constraints on the seismic risk associated with these regions as appears in the local building code using a completely independent approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
6.
The Acrochordidae consists of three congeneric species of aquatic snakes distributed among fresh water and coastal marine environments in tropical southern Asia. The smallest species,Acrochordus granulatus, is euryhaline and the only acrochordid that permanently inhabits coastal seas and estuaries. The diving and metabolic physiology of this species is highly specialized and reflects the demands of estuarine environments. A capability for prolonged aerobic diving is attributable to low rates of oxygen consumption, high capacity for oxygen storage, nearly complete utilization of the oxygen stores, and cutaneous gas exchange. Recent studies indicate thatA. granulatus is primarily ammonotelic and requires a source of fresh water for elimination of nitrogenous wastes. The requirement for fresh water potentially limits seaward migration of populations due to the dependence of snakes on rivers or coastal rainfall. Adaptations for shallow-water diving conceivably further limit seaward migration, with the result that they have evolved as estuarine specialists that are restricted from deeper waters and the open ocean.  相似文献   
7.
Effectiveness of a new organic polymer sand-fixing agent on sand fixation   总被引:4,自引:0,他引:4  
Sand erosion due to wind is a serious problem in the relatively arid and semiarid areas. A new organic polymer sand-fixing agent (PVIN), polymerized by the monomer of vinyl acetate, initiator and cross-linking agent, is introduced in this study. To understand the effect of PVIN on sand fixation, the strength test, water-retaining test and wind erosion test were performed. The results indicated that the presence of PVIN could improve the structural strength, water retaining and anti-wind erosion ability. When the sand-fixing agent was applied on the sand surface, the crust in surface layer was produced. The structural strength variations determined by micropenetrometer indicated that the specimens treated with concentrations of 1, 3, 5, 10, and 20% PVIN have produced the crusts with thickness being approximately 1, 2, 4–5, 5, and 5–6 mm and the strength being around 1, 4.5, 18, 26 and 41, respectively. This crust has a good water-absorption, water-retaining and anti-evaporation properties. It can also improve the anti-wind erosion ability, and also prevent the loose sand surface from forming a sand dune in the wind erosion conditions. Additionally, this sand-fixing agent has a low cost, it is easier to produce and apply and also produces no additional pollution. Therefore, this can be considered as an ideal soil-fixing agents to control sand erosion in the relatively arid and semiarid areas.  相似文献   
8.
Geostatistical evaluation of the groundwater depth (GWD) in California's South Coast hydrologic region, and its sensitivity to different spatiotemporal assumptions, is presented in this paper. We obtain a pseudo-stationary representation of the groundwater depth, using the publicly available, online database from the GAMA GeoTracker project, while tracking the associated uncertainty throughout the process. We create nine different sub-datasets, using different temporal constraints, such as seasonal partitioning and different long-term variability filtering criteria. The geostatistical analysis and comparison between the different maps highlight the trade-off between spatial and temporal accuracy. For example, when moving to stricter filtering criteria, despite removing a large number of sites from the interpolation, the root mean squared error (RMSE) calculated in the analysis either decreased or only slightly increased. This suggests that the long-term variability filter is a good representation of the GWD accuracy and that the cross-validation RMSE captures both the stability effect as well as spatial density of the measurement points. We further find that the point-specific standard error is strongly correlated with the associated GWD prediction and that the mean relative error is approximately 60% of the prediction. Hence, it is highly recommended to account for such error in a forward-engineering application, by introducing a GWD distribution rather than a single value into the analysis. Finally, we analyze seasonal fluctuations in the study region and find that they are on average 2.5 m with a standard deviation of 8 m.  相似文献   
9.
The high mobility of rapid landslides is one of the most important subjects of both theoretical and practical interest to engineers and scientists. The idea that ultralow resistance could explain the high mobility inspires researchers to examine the shear behavior of granular materials under a wide range of conditions, but the response of granular materials to fast loading rates is largely unknown. The motivation for this study was to examine several fundamental issues of particle properties and mechanical conditions on the fast shear behavior of granular materials. Two granular materials were studied in the oven-dried state and were sheared by employing a ring-shear apparatus. Results indicated that angular particles (silica sand) had higher shear strength parameters than spherical particles (glass beads). In addition, the dilative process was observed during shearing, which depended on normal stress and particle shape. A slightly negative shear-rate effect on shear strength was observed for both granular materials under a certain range of shear rates. Furthermore, cumulative shear displacement had a significant effect on the degree of particle crushing. Fast ring-shear tests also revealed that shear rate had a slightly negative effect on particle crushing. Based on these experimental results, the possible applications of dynamic grain fragmentation theory to assess the high mobility of rapid landsliding phenomena were discussed. It was indicated that the magnitude and release rate of elastic strain energy generated by grain fragmentation played important roles on the dynamic process of landslide mobility.  相似文献   
10.
Failure of several gravity retaining walls in residential areas built on reclaimed land, during the October 23, 2004 Chuetsu earthquake in Niigata Prefecture, Japan, determined the authorities to consider the seismic retrofit of the walls in order to mitigate future similar disasters in the urban environment. This study addresses the effectiveness of ground anchors in improving the seismic performance of such retaining structures through a sliding block analysis of the seismic response of an anchored gravity retaining wall supporting a dry homogeneous fill slope subject to horizontal ground shaking. Sliding failure along the base of the wall and translational failure along a planar slip surface of the active wedge within the fill material behind the wall were considered in the formulation, whereas the anchor load was taken as a line load acting on the face of the gravity retaining wall. The effects of magnitude and orientation of anchor load on the yield acceleration of the wall-backfill system and seismically induced wall displacements were examined. It was found that for the same anchor orientation, the yield acceleration increases in a quasi-linear manner with increasing the anchor load, whereas an anchor load of a given magnitude acting at various orientations produces essentially identical yield accelerations. On the other hand, the computed earthquake-induced permanent displacements of the anchored gravity retaining wall decrease exponentially with increasing magnitude of anchor load. Additionally, the influence of backfill strength properties (e.g., internal friction angle) on the seismic wall displacement appears to diminish considerably for the anchored gravity retaining wall. A dynamic displacement analysis conducted for the anchored gravity retaining wall subjected to various seismic waveforms scaled to the same peak earthquake acceleration revealed a good correlation between the calculated permanent wall displacements and the Arias intensity parameter characterizing the input accelerogram.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号