首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
地球物理   2篇
地质学   8篇
海洋学   3篇
天文学   5篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Central India is traversed by a WSW-ENE trending Narmada-Son lineament (NSL) which is characterized by the presence of numerous hot springs, feeder dykes for Deccan Traps and seismicity all along its length. It is divided in two parts by the Barwani-Sukta Fault (BSF). To the west of this fault a graben exists, whereas to the east the basement is uplifted between Narmada North Fault (NNF) and Narmada South Fault (NSF). The present work deals with the 2-D thermal modeling to delineate the crustal thermal structure of the western part of NSL region along the Thuadara-Sindad Deep Seismic Sounding (DSS) profile which runs almost in the N-S direction across the NSL. Numerical results of the model reveal that the conductive surface heat flow value in the region under consideration varies between 45 and 47mW/m2. Out of which 23mW/m2 is the contribution from the mantle heat flow and the remaining from within the crust. The Curie depth is found to vary between 46 and 47 km and is in close agreement with the earlier reported Curie depth estimated from the analysis of MAGSAT data. The Moho temperature varies between 470 and 500°C. This study suggests that this western part of central Indian region is characterized by low mantle heat flow which in turn makes the lower crust brittle and amenable to the occurrence of deep focused earthquakes such as Satpura (1938) earthquake.  相似文献   
2.
We have studied the characteristics of coronal mass ejections (CMEs) associated with Deca-Hectometric (DH) type II radio bursts (1–14 MHz) in the interplanetary medium during the year 1997–2005. The DH CMEs are divided into two parts: (i) DH CMEs (All) and (ii) DH CMEs (Limb). We found that 65% (177/273) of all events have the speed >900 km?s?1 and the remaining 35% (96/273) events have the speed below 900 km?s?1. The average speed of all and limb DH CMEs are 1230 and 1288 km?s?1, respectively, which is nearly three times the average speed of general population of CMEs (473 km?s?1). The average widths of all and limb DH CMEs are 105° and 106°, respectively, which is twice the average width (52°) of the general population of CMEs. We found a better correlation between the speed and width of limb DH CMEs (R=?0.61) than all DH CMEs (R=?0.53). Only 28% (177/637) of fast >900 km?s?1 general population of CMEs are reported with DH type II bursts counterpart. The above results gives that the relation between the CME properties is better for limb events.  相似文献   
3.
Kalaivani  P. Pappa  Prakash  O.  Shanmugaraju  A.  Feng  Li  Lu  Lei  Gan  Weigun  Michalek  G. 《Astrophysics》2021,64(3):327-344
Astrophysics - We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip > 10 MeV) from April 1997 to December 2014. We compare properties...  相似文献   
4.

We have statistically analyzed a set of 115 low frequency (Deca-Hectometer wavelengths range) type II and type III bursts associated with major Solar Energetic Particle (SEP: Ep?>?10 MeV) events and their solar causes such as solar flares and coronal mass ejections (CMEs) observed from 1997 to 2014. We classified them into two sets of events based on the duration of the associated solar flares:75 impulsive flares (duration <?60 min) and 40 gradual flares (duration >?60 min).On an average, the peak flux (integrated flux) of impulsive flares?×?2.9 (0.32 J m?2) is stronger than that of gradual flares M6.8 (0.24 J m?2). We found that impulsive flare-associated CMEs are highly decelerated with larger initial acceleration and they achieved their peak speed at lower heights (??27.66 m s?2 and 14.23 Ro) than the gradual flare-associated CMEs (6.26 m s?2 and 15.30 Ro), even though both sets of events have similar sky-plane speed (space speed) within LASCO field of view. The impulsive flare-associated SEP events (Rt?=?989.23 min: 2.86 days) are short lived and they quickly reach their peak intensity (shorter rise time) when compared with gradual flares associated events (Rt?=?1275.45 min: 3.34 days). We found a good correlation between the logarithmic peak intensity of all SEPs and properties of CMEs (space speed: cc?=?0.52, SEcc?=?0.083), and solar flares (log integrated flux: cc?=?0.44, SEcc?=?0.083). This particular result gives no clear cut distinction between flare-related and CME-related SEP events for this set of major SEP events. We derived the peak intensity, integrated intensity, duration and slope of these bursts from the radio dynamic spectra observed by Wind/WAVES. Most of the properties (peak intensity, integrated intensity and starting frequency) of DH type II bursts associated with impulsive and gradual flare events are found to be similar in magnitudes. Interestingly, we found that impulsive flare-associated DH type III bursts are longer, stronger and faster (31.30 min, 6.43 sfu and 22.49 MHz h?1) than the gradual flare- associated DH type III bursts (25.08 min, 5.85 sfu and 17.84 MHz h?1). In addition, we also found a significant correlation between the properties of SEPs and key parameters of DH type III bursts. This result shows a closer association of peak intensity of the SEPs with the properties of DH type III radio bursts than with the properties DH type II radio bursts, atleast for this set of 115 major SEP events.

  相似文献   
5.
An analytical solution of a linearized Boussinesq equation is obtained to predict water table fluctuations as a result of time varying recharge from a strip basin for any number of recharge cycles. The analytical solution is obtained by using finite Fourier sine transform. Applications of the solution for the prediction of water table fluctuations and sensitivity analysis are demonstrated with the help of example problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
6.
Sundara Raman  K.  Selvendran  R.  Thiagarajan  R. 《Solar physics》1998,180(1-2):331-341
The evolution of five bipolar sunspot groups during their disk passage leading to flares are analysed and studied using Kodaikanal Observatory photoheliogram and spectroheliogram data. The changes in the orientation angle observed in the spot groups show that sunspot proper motion plays an important role in introducing non-potential character to the field lines. This in turn develops shear and once the shear reaches a critical value, the flare eruption is triggered. The rotational motions in the sunspots are measured from the change in their orientation angle and are given as a measure of shear. The sunspots considered for analyses in the present study are not associated with any filament activity.  相似文献   
7.
Model tests were conducted on two 1:100 scaled models of a typical concrete gravity substructure at the University of Western Australia. The two models had dimensions 0.5 m length×0.5 m width with the first model being a sealed closed bottom box of height 0.1 m and the second model being an open bottom box with skirt length of 0.1 m. The mass of the air cushion model was changed to accommodate various water plug heights within the skirt chamber. Each model was floated at a constant draft of 0.1 m and tested in water depths ranging between 0.03 m (shallow) and 0.8 m (deep). The environment comprised regular waves with periods ranging between 0.6 and 3.5 s and amplitude of 0.08–0.02 m. To quantify the dynamic response the heave and pitch motions of each model were measured.A simplified theoretical solution based on long wavelength, linear wave assumptions was developed and applied to the geometries in consideration. Improvements to the theory are sought using the forcing function from a boundary element code, as well as utilizing added mass coefficients from free decay experiments. Results show that experimental trends compare reasonably well with analytical solution in particular for periods longer than the natural period. The results show that introducing air cushion support into a CGS increases the pitch response, while having little effect of the heave motion.  相似文献   
8.
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan–Pulgaon and Ujjan–Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north–south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha–Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to 23 mW/m2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.  相似文献   
9.
The problem of liquid sloshing has gained recent attention with the proliferation of liquefied natural gas (LNG) carriers transporting liquids in partially filled tanks. Impact pressures caused by sloshing depend on the tank fill level, period and amplitude of oscillation of the tank. In this paper, we first present the rudiments of a linear potential theory for sloshing motions in a two-dimensional rectangular tank, due to small amplitude sway motions. Although this topic is fundamental, we clarify inconsistencies in the published literature and texts.Numerical investigations were carried out on the sloshing motions in a two-dimensional tank in the sway excitation. The fluid domain was modeled using a finite volume approximation, and the air–water interface was tracked using a volume-of-fluid (VOF) technique. Computational results for free surface elevation and impact pressure are found to be in good agreement with theory and published data. The fill levels were varied from 10% to 95%, and the excitation time periods were varied from 0.8 to 2.8 s for a constant sway amplitude of 0.25 m (peak–peak) at 1:30 scale. The results of the parametric study are compared with theoretical predictions and suggestions are made on incorporating sloshing effects in standard seakeeping analysis for LNG carriers.  相似文献   
10.
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin. In this work P-wave velocities obtained from the DSS studies have been converted into heat generation values for the computation of temperature distribution. The model result reveals the Curie isotherm at a depth of ≈22 km and Moho temperature at around 900‡C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号