首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
地球物理   2篇
地质学   1篇
海洋学   1篇
自然地理   2篇
  2016年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
This short note reviews our thinking on how IGGOS can best achieve a high status within the set of global monitoring programmes. If such a high status can be obtained, then the importance of geodetic networks and services will be recognized more widely, and their activities will consequently be better resourced in the long term. One particular aspect concerns how IGGOS can complement the roles of the various IGOS partners within global monitoring. The different ways in which IGGOS can contribute to IGOS are outlined.  相似文献   
2.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   
3.
4.
5.
Magnetotelluric and gravity data have been collected within a ca. 170 km long traverse running from the Pacific coast of Nicaragua in the west to the Nicaraguan Highland in the east. This part of Nicaragua is characterized by sedimentary rocks of the Pacific Coastal Plain, separated from the Tertiary volcanic rocks of the Highland by the NW-SE-trending Nicaraguan Depression. 2-D interpretation of the magnetotelluric (MT) data, collected at 13 stations, indicates four regions of high electrical conductivity in addition to the conductive coastal region. Two of these are associated with conducting sediments and pyroclastics in the upper part of the crust. Two other conductive structures have been defined at depth around 20 km and the one best defined is located below the depression. From the distribution of seismic events, volcanic activity in the depression and the similarity in geophysical characteristics with areas such as the Rio Grande Rift, this conductor is interpreted as a melt layer or a complex of magma chambers. Models of the upper lithosphere, constrained by the MT model, vertical electrical sounding (VES) data, seismic data and densities, have been tested using gravity data. A model that passes this test shows a gradual thickening of the crust eastwards from the Pacific coast. An anomaly centred over the depression is interpreted to have its origin in a thinning of the crust. In this model the melt layer is situated on top of the bulge of the lower lithosphere. A change in the composition of the crust, from the Pacific Coastal Plain to the Highland, is indicated from the change in character of the MT response and from the density distribution in the gravity model. This may support the hypothesis that the Pacific region is an accreted terrane. MT and gravity data indicate a depth to a resistive and high-density basement in the depression of ca. 2 km. On the basis of this, the vertical setting in the depression is estimated to be of the order of 2.5 km.  相似文献   
6.
Gold and base metals of the Mpanda Mineral Field (MMF) is the focus of this paper. Gold veins and gold-bearing base metal occurrences are structurally controlled by conjugate sets of NW–SE and E–W trending faults and/or shear zones that crosscut high-grade metamorphic rocks and post-kinematic intrusions. It was anticipated that Palaeoproterozic country rocks could have been potential host rocks for the gold mineralisation in this area. This argumentation was based on Pb model ages of various deposits from the MMF. Recent fieldwork and Pb isotopic results presented herein indicate that epigenetic gold and base metal vein-type mineralisation in the MMF is post-Palaeoproterozoic.Our Pb isotope study concentrates on constraining the sources of metals in gold-bearing quartz reefs and base metal occurrences. Pb isotopes of whole rocks and minerals indicate that mineralisation was emplaced during the Neoproterozoic, contemporaneous with the intrusion of alkaline granites and carbonatite complexes (e.g., Sangu–Ikola carbonatite complex) at 720 Ma. The source of Pb in the mineral occurrences is compatible with that characteristic of the Palaeoproterozoic host rocks. Aeromagnetic data suggest that the gold-bearing, NNW–SSE trending area continues to the north beyond Mpanda town. Pb isotope results and aeromagnetic data have significant implications for future exploration programs within the region, in that the search should potentially focus on the defined geophysical borders and trendlines, and on Neoproterozoic, rather than Palaeoproterozoic vein systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号