首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
海洋学   3篇
  2019年   1篇
  2011年   1篇
  2010年   2篇
排序方式: 共有4条查询结果,搜索用时 109 毫秒
1
1.

Parameterization of wave runup is of paramount importance for an assessment of coastal hazards. Parametric models employ wave (e.g., Hs and Lp) and beach (i.e., β) parameters to estimate extreme runup (e.g., R2%). Thus, recent studies have been devoted to improving such parameterizations by including additional information regarding wave forcing or beach morphology features. However, the effects of intra-wave dynamics, related to the random nature of the wave transformation process, on runup statistics have not been incorporated. This work employs a phase- and depth- resolving model, based on the Reynolds-averaged Navier-Stokes equations, to investigate different sources of variability associated with runup on planar beaches. The numerical model is validated with laboratory runup data. Subsequently, the role of both aleatory uncertainty and other known sources of runup variability (i.e., frequency spreading and bed roughness) is investigated. Model results show that aleatory uncertainty can be more important than the contributions from other sources of variability such as the bed roughness and frequency spreading. Ensemble results are employed to develop a new parametric model which uses the Hunt (J Waterw Port Coastal Ocean Eng 85:123–152, 1959) scaling parameter \(\beta \left (H_{s}L_{p}\right )^{1/2}\).

  相似文献   
2.
This work aims to demonstrate an advancement towards the integrated modelling of surf zone hydrodynamics by means of a VOF-type numerical model (COBRAS-UC) based on the Reynolds-Averaged Navier–Stokes equations. In this paper, the numerical model is adapted and validated for the study of nearshore processes on a mildly-sloping beach. The model prediction of wave energy transformation and higher order statistics (skewness and asymmetry) are in good agreement with detailed laboratory observations from a barred beach [Boers, M. (1996). “Simulation of a surf zone with a barred beach; Report 1: Wave heights and wave breaking”. Tech. Rep.96-5, Comm. on Hydrol. and Geol. Eng., Dept. of Civil Engineering, Delft University of Technology]. Moreover, the numerical model allows us to study the low-frequency motions inside the surf zone. It is found that in order to achieve a satisfactory simulation of both short- and long-wave transformation, the numerical model must achieve: (i) the simultaneous second-order wave generation and absorption, (ii) the energy transfer between triad of components, (iii) the short- and long-wave energy dissipation inside the surf zone, and (iv) the wave reflection at the shoreline. Comparisons between numerical and experimental results demonstrate the model capability to satisfactorily simulate all the aforementioned processes.  相似文献   
3.
This paper presents an integrated investigation of physical processes generating impulsive pressures under the action of plunging breakers impinging on gravel beaches. This work is an extension of a recent investigation which suggested that wave impacts from plunging breakers acting on gravel beaches may be a key mechanism to enhance sediment mobilisation. In particular, comparisons of full scale laboratory measurements against model results from a well-validated phase/depth-resolving numerical model based on the Reynolds–Averaged Navier–Stokes (RANS) equations are presented. This represents the first attempt at comparison with such a tool against observed hydrodynamics on steep (slope~1/8) gravel beaches at prototype scale. In order to understand how impulsive pressures are generated under plunging waves, the numerical model is used to carry out a detailed investigation to examine the role of each of the acceleration terms in the momentum balance. Consistent with prior studies, numerical results show that under plunging breakers the local acceleration (∂u/∂t) alone cannot be used as a proxy for pressure gradients. However, the contribution of the third term (wu/∂z) of total acceleration is recognized for the first time and indicates that this term has an important role in both the induced pressure gradient and sediment mobilisation as induced by this particular type of breaking. Furthermore, results suggest that a parameterisation of the pressure gradient in terms of ∂u/∂t+uu/∂x, may not suffice when dealing with plunging breakers and hence there is a lack of a suitable parameterisation of this process in the present literature. Thus, for different types of breaking it may be necessary to consider a different characterisation of the pressure gradient toward the parameterisation of sediment transport inside the surf zone.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号