首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地球物理   1篇
  2007年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Taro  Ubukawa  Akiko  Hatanaka  Keisaku  Matsumoto  Takao  Hirajima 《Island Arc》2007,16(4):553-574
Abstract Various modes of occurrence of talc were identified in piemontite‐quartz schists collected from schist and eclogite units in the Kotsu area of the Sanbagawa Belt, eastern Shikoku, Japan. They can be classified into the following types: (A) matrix and (B) pull‐apart talc. The matrix talc is associated with aegirineaugite or glaucophane in the eclogite unit and with albite or chlorite in the schist unit. The pull‐apart talc is developed at the pull‐apart of microboudin structures of Na‐amphibole, along with albite or chlorite in samples from both units, suggesting that the pull‐apart talc was formed by Na‐amphibole consuming reactions in both units. The talc–aegirineaugite–phengite association is found in a thin layer (a few millimetres thick), with higher Na2O/(Na2O + Al2O3 + MgO) ratio in the ANM (Al2O3–Na2O–MgO) diagram projected from phengite, epidote and other minerals, in the eclogite unit. Crystals of aegirineaugite have decreased jadeite content [= 100 × Al/(Na + Ca)] and increased aegirine content [= 100 × (Na – Al)/(Na + Ca)] from the core (ca Jd40Aeg40Di20) to the rim (ca Jd23Aeg53Di24), and are replaced by winchite and albite in varying degrees at the crystal margins. Na‐amphibole is glaucophane/crossite, commonly rimmed by Al‐poor crossite or winchite at the margin in the eclogite unit, although it is relatively homogeneous crossite in the schist unit. These textures suggest that the talc‐phengite‐(aegirineaugite or glaucophane) assemblage equilibrated during an early stage of metamorphism and the pull‐apart talc was formed at a later stage in the eclogite unit. A plausible petrogenetic grid in the NCKFe3+MASH system with excess piemontite (regarded as epidote), hematite, quartz and water, pseudosection analysis for the aegirineaugite‐bearing layer and the observed mineral assemblages suggest that the talc‐aegirineaugite‐phengite assemblage is stable under high pressure conditions (ca 560–580°C and 18–20 kbar). The pull‐apart talc was formed at ca 565–580°C and 9.5–10.5 kbar by the reaction of glaucophane/crossite + paragonite = talc + albite during the decompression stage, suggesting that the piemontite‐quartz schist in the eclogite unit experienced high‐pressure metamorphism at ca 50–60 km depth and was then exhumed to ca 30 km depth under nearly adiabatic conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号