首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
地球物理   12篇
地质学   5篇
海洋学   4篇
自然地理   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  1987年   1篇
  1983年   2篇
  1979年   1篇
  1973年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Doklady Earth Sciences - A fundamentally new conclusion that zones of high seismic activity are controlled by electroconducting (fluid-saturated) fragments rather than by the entire deep fault is...  相似文献   
2.
Izvestiya, Physics of the Solid Earth - Abstract—When solving direct and inverse problems of magnetotellurics, magnetic permeability throughout model medium is conventionally assumed to be...  相似文献   
3.
Izvestiya, Atmospheric and Oceanic Physics - This study compares three approaches to microclimate research by the example of Russian Arctic cities in winter conditions: (1) using high-resolution...  相似文献   
4.
The paper presents the results of 2D inversion of deep magnetotelluric (MT) and magnetovariational (MV) soundings along the Naryn Line. The method of partial (sequential) inversions is used. According to this method, at the first stage, magnetovariation responses are used for the localization of deep anomalies of electrical conductivity, and then the magnetotelluric sounding data are invoked to refine the structure of the host medium and the structural details in the upper part of the section. It is shown that this approach enables one to estimate the informativeness of separate components of the electromagnetic field, to reduce the distorting influence of the near-surface geoelectric inhomogeneities, and to increase the stability of the final solution of the inverse problem.  相似文献   
5.
The BEAR array of simultaneous electromagnetic (EM) observations probes the deep crustal and upper mantle conductivity structure of the Baltic Shield searching for the lithosphere–asthenosphere boundary beneath. The adequate interpretation of the results of this unique high latitude natural field EM sounding requires proper understanding of the actual external excitation conditions because conventionally used plane wave model assumptions may be substantially violated in the vicinity of inhomogeneous polar sources. The paper presents an overview of the morphology and statistics of source distortions in the BEAR EM field transfer functions (TF) and the ways of their suppression. The stability of the final TF estimates obtained with the exclusion of intensive non-stationary auroral effects is further justified. The external excitation model effective for the whole BEAR observation period is inferred from the array distribution of the inter-station geomagnetic transfer functions. The model is supported by the results of polar ionosphere–magnetosphere current system studies, based on the simultaneous ground and satellite geomagnetic observations, and sets bounds for the “plane wave” approach in the BEAR data interpretation to avoid unfounded inferences on the upper mantle electrical properties. The signatures of the lithosphere–asthenospere boundary under Fennoscandia derived from the BEAR data are summarized and its resolution within the traditional plane wave interpretational paradigm is analysed assuming the presented external source pattern and estimated TF uncertainties caused by the source inhomogeneity.  相似文献   
6.
In the past decade, the applications of magnetotelluric method in the electric prospecting for ore bodies have been rapidly progressing. In the present work, we summarize the first results on this way. We discuss the specificity of the geoelectrical models in the problems of mining prospecting for ore bodies. The state-of-the-art capabilities of the method, which rely on the synchronous observation systems and the procedure of joint inversion of magnetotelluric and magnetovariational responses, are considered in the context of ore mineral exploration. The results of modeling a typical mining audio-magnetotelluric survey for ore minerals are presented. On the basis of these simulations and the data provided by in-situ soundings, the efficient approaches to the processing, analysis, and inversion of these data are discussed and illustrated. The future trends in magnetotellurics as applied to the mining prospecting are analyzed.  相似文献   
7.
Numerical modeling is performed for seafloor magnetotelluric sounding in a 2-D offshore zone in a period range of 0.25–16 h. An anomaly of the seafloor longitudinal impedance observed at distances of 20–260 km from the shore is analyzed. Dispersion relations are violated for the longitudinal impedance within the anomalous zone.  相似文献   
8.
长周期大地电磁(LMT)是基于常规MT理论发展起来的电磁测深技术,青藏高原东部岩石圈较厚、视电阻率较低,应用LMT方法能够弥补常规MT仪器对低频信号响应的不足,获得有用的深部信息。文中概述了LMT的数据采集、处理及反演解释,并介绍了将LMT应用于东喜马拉雅构造结及其周围地区完成的长周期观测剖面——下察隅—玉树LMT剖面的岩石圈结构探测实例。实际观测表明,在重叠频段内LMT结果与常规MT具有良好的一致性;LMT数据处理实现的阻抗和倾子估计,在深部信息上具有更高的分辨率。LMT剖面结果揭示了青藏高原东部普遍存在地下低阻体,为局部地区部分熔融和地下流体存在的可能性提供了依据。LMT测深较好地弥补了常规MT方法在巨厚岩石圈和遇到低阻体时探测深度的局限性。  相似文献   
9.
A detailed modeling of meteorological parameters over the last 30 years (1985–2014) has been performed for the Sea of Okhotsk and Sakhalin regions in the frame of the COSMO-CLM regional mesometeorological nonhydrostatic atmospheric model. The downscaling technology is suggested and achieved with three consequent “nesting domains” (with 13.2-, 6.6-, and 2.2-km grid scales). The COSMO-CLM model reproduces (especially successfully on the 2.2-km grid scale) the extremes of wind velocity observed by meteorological stations well. Synoptic situations accompanied by extreme wind speeds are reproduced in detail.  相似文献   
10.
Maps of the magnitude of the full vector and the vertical component of an anomalous lithospheric magnetic field over the Voronezh anticline (VA) for the three high-altitude observation levels were compiled based on geomagnetic measurements from the CHAMP satellite. The isometric positive anomaly centered at about 50° N and 37° E stands out. Its amplitude decreases with increasing observation altitude without changing the form. Comparison of the parameters of the detected anomaly with data obtained for this site by other methods confirms that it really exists and that its spatial position is accurately determined, which indicates the reliability of the values of the selected field of lithospheric anomalies. The change in the parameters of the magnetic anomaly with respect to the observation level over the Earth’s surface is consistent with the concepts of geological structural features of the lithosphere in the region. The anomaly offset to the south on the satellite altitudes apparently indicates an uplift of crystalline basement rocks and a more southern position of VA deep roots relative to that accepted in the global magnetization model. The use of satellite data obtained at different altitudes opens up additional possibilities for the application of gradient methods in the interpretation of the magnetic fields of lithospheric anomalies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号