首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   3篇
地球物理   5篇
地质学   2篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2007年   1篇
  2004年   1篇
  1997年   1篇
  1982年   3篇
  1978年   1篇
排序方式: 共有11条查询结果,搜索用时 46 毫秒
1.
This article reviews the recent developments in the functional chain from climate models to climate scenarios, through hydrology all the way to water resources management, design and policy making. Although climate models, such as Global Circulation Models (GCMs) continue to evolve, their outputs remain crude and often even inappropriate to watershed-scale hydrological analyses. The bridging techniques are evolving, though. Many families of regionalization technologies are under progress in parallel. Perhaps the most important advances are in the field of regional weather patterns, such as ENSO (El Niño-Southern Oscillation), NAO (North Atlantic Oscillation) and many more. The gap from hydrology to water resources development is by far not that wide. The traditional and contemporary practices are well in place. In climate change studies, the bottleneck is not in this link itself but in the climatic input. The tendency seems to be towards integrated water resources assessments, where climate is only one among many changes that are expected to occur, such as demography, land cover and land use, economy, technologies, and so forth. In such a pragmatic setting a risk–analytic interpretation of those scenarios is often called for. The above-outlined continuum from climate to water is a topic where the physically based modelers, the empiricists and the pragmatists should not get restricted to their own way of thinking. The issues should develop hand in hand. Perhaps the greatest challenge is to incorporate and respect the pragmatic policy-related component to the two other branches. For this purpose, it is helpful to reverse the direction of thinking from time to time to start—instead of climate models—from practical needs and think how the climate scenarios and models help really in the difficult task of designing better water structures, outline better policies and formulate better operational rules in the water field.  相似文献   
2.
3.
ABSTRACT

We greatly enjoyed reading the paper by Liu et al., which is both timely and rich in insight, as it discusses the challenges in operationalizing the water–energy–food security (WEF) nexus. The nexus approach is gaining increasing attention, both in research and in policy documents, as reflected in the number and content of published documents in the past years and highlighted by the authors.  相似文献   
4.
Theoretical and Applied Climatology - The coastal waters of the southeastern USA contain important protected habitats and natural resources that are vulnerable to climate variability and singular...  相似文献   
5.
ABSTRACT

We greatly enjoyed reading the paper by Liu et al., which is both timely and rich in insight, as it discusses the challenges in operationalizing the water–energy–food security (WEF) nexus. The nexus approach is gaining increasing attention, both in research and in policy documents, as reflected in the number and content of published documents in the past years and highlighted by the authors.  相似文献   
6.
7.
Measurements of nutrients and trace metals are used to examine the processes controlling their distributions in the interstitial waters of Saanich Inlet. Samples were collected using both in situ and squeezing techniques with excellent agreement. Additional measurements of porosity, organic carbon and sedimentation rate by 210Pb are used in conjunction with the nutrient measurements to test the equation for the diagenesis of organic matter in fine-grained, organic-rich and rapidly-accumulating sediments.Organic carbon and sulfate decrease with depth in the sediment whereas ammonia and alkalinity increase. In the zone of sulfate reduction (0–20 cm) the rate constants for sulfate reduction (ks), ammonia production (kN) and organic carbon decomposition (kc) agree within a factor of two. Our calculations indicate, however, that this is fortuitous since the observed decrease in paniculate organic carbon is insufficient to account for the sulfate consumption. Sulfate must also be consumed by reaction with methane diffusing up from the underlying sediments. The rate constant for sulfate reduction using particulate organic carbon is lower than a modelled rate encompassing all organic species, including methane.The rate constant for ammonia production (kN) decreases by an order of magnitude when sulfate is completely depleted and methane production dominates.Thermodynamic calculations suggest that the interstitial waters are saturated or supersaturated with respect to all forms of iron ‘monosulfides’, apatite and rhodochrosite.  相似文献   
8.
Climatic change impact studies are among the most complicated environmental assessments scientists have ever faced. The questions that policy makers face are enormous. There is plenty of experience and systematization in the environmental impact assessment (EIA) practice, especially at project level studies, but it has not been fully utilized in climatic change studies, we argue. Screening and scoping in EIA are typical examples. Beset by uncertainty and interdisciplinary divisions, climatic change impact analyses and policy assessments have been dominated by very detailed studies without the prior cross-sectorial, integrative phases that would aid in focusing the issues. Here, we present a probabilistic, Bayesian impact matrix approach (BeNe-EIA) for expert judgment elicitation, using belief networks from artificial intelligence. One or more experts are used to define a Bayesian prior distribution to each of the selected attributes, and the interattribute links, of the system under study. Posterior probabilities are calculated interactively, indicating consistency of the assessment and allowing iterative analysis of the system. Illustration is given by 2 impact studies of surface waters. In addition to climatic change studies, the approach has been designed to be applicable to conventional EIA. Insufficient attention has thus far been devoted to the probabilistic nature of the assessment and potential inconsistencies in expert judgment.  相似文献   
9.
A sharp decrease in total suspended solids (TSS) concentration has occurred in the Mekong River after the closure of the Manwan Dam in China in 1993, the first of a planned cascade of eight dams. This paper describes the upstream developments on the Mekong River, concentrating on the effects of hydropower dams and reservoirs. The reservoir-related changes in total suspended solids, suspended sediment concentration (SSC), and hydrology have been analyzed, and the impacts of such possible changes on the Lower Mekong Basin discussed. The theoretical trapping efficiency of the proposed dams has been computed and the amount of sediment to be trapped in the reservoirs estimated. The reservoir trapping of sediments and the changing of natural flow patterns will impact the countries downstream in this international river basin. Both positive and negative possible effects of such impacts have been reviewed, based on the available data from the Mekong and studies on other basins.  相似文献   
10.
Tonle Sap Lake (TSL) is one of the world's most productive lacustrine ecosystems, driven by the Mekong River's seasonal flood pulse. This flood pulse and its long-term dynamics under the Mekong River basin's (MRB) fast socio-economic development and climate change need to be identified and understood. However, existing studies fall short of sufficient time coverage or concentrate only on changes in water level (WL) that is only one of the critical flood pulse parameters influencing the flood pulse ecosystem productivity. Considering the rapidly changing hydroclimatic conditions in the Mekong basin, it is crucial to systematically analyse the changes in multiple key flood pulse parameters. Here, we aim to do that by using observed WL data for 1960–2019 accompanied with several parameters derived from a Digital Bathymetry Model. Results show significant declines of WL and inundation area from the late 1990s in the dry season and for the whole year, on top of increased subdecadal variability. Decreasing (increasing) probabilities of high (low) inundation area for 2000–2019 have been found, in comparison to the return period of inundation area for 1986–2000 (1960–1986). The mean seasonal cycle of daily WL in dry (wet) season for 2000–2019, compared to that for 1986–2000, has shifted by 10 (5) days. Significant correlations and coherence changes between the WL and large-scale circulations (i.e., El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Indian Ocean Dipole (IOD)), indicate that the atmospheric circulations could have influenced the flood pulse in different time scales. Also, the changes in discharge at the Mekong mainstream suggest that anthropogenic drivers may have impacted the high water levels in the lake. Overall, our results indicate a declining flood pulse since the late 1990s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号