首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2011年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Relicts of deformed lithospheric mantle have been identified within serpentinites and weathered peridotites recovered from nine dredge sites and one submersible dive site from across the Godzilla Megamullion, which was emplaced at the now‐extinct Parece Vela Rift in the Parece Vela Basin, a back‐arc basin in the Philippine Sea. The serpentinites consist dominantly of lizardite ± chrysotile and magnetite with minor relict primary minerals that include pyroxene, spinel, and rare olivine. The weathered peridotites consist of pyroxene, spinel, lizardite ± chrysotile, and magnetite as well as weathering products of olivine. These rocks were classified in hand specimen into three types with different structures: massive, foliated, and mylonitic. In thin‐section the serpentine minerals show no sign of deformation, whereas relict primary minerals show evidence of plastic deformation such as undulose extinction, kink bands, dynamic recrystallization, and weak to moderate crystallographic preferred orientations. Therefore, the serpentinites and weathered peridotites result from the static replacement and weathering of previously ductile‐deformed peridotite. Given their location close to or on the detachment surface that exposed them, the relicts of peridotite provide evidence of deformation in the lithospheric mantle that could be related to the formation and emplacement of the Godzilla Megamullion in the Parece Vela Rift.  相似文献   
2.
Detailed petrological work was carried out on serpentinized peridotite dredged and sampled by submersible from the southern part of the Mariana Trench to reveal the nature of the mantle wedge in the southern Mariana forearc. The southern part of the Mariana Trench is important in that we should expect to find a transect of a typical island arc structure; that is, from east to west, the Mariana forearc, the Mariana arc proper, the Mariana Trough (active back-arc spreading center), and the West Mariana Ridge (remnant arc). The most striking feature of peridotites from the southern part of the trench is that primary hornblende is a major constituent mineral in many specimens. Thus, the peridotite samples are divided into anhydrous (A-type), hydrous (H-type) and intermediate (I-type) groups. Petrological data suggest that each type of peridotite is a residue of extensive partial melting in the upper mantle. It is argued here that the I- and H-type peridotites were modified from `proto-A-type peridotite' by fluid infiltration. The fluid was enriched in Al, Ti, Fe, and alkalis, and may have caused changes in mineral and bulk chemical compositions of the peridotites. A-type peridotite derives from the `proto-A-type peridotite' directly, without any fluid contamination. After the formation of the `proto-A-, I-, and H-type peridotites', lower-temperature fluids, probably of seawater origin, produced retrograde metamorphism and alteration including serpentinization. The mantle wedge in the southern Mariana forearc was heterogeneous in fluid supply.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号