首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   4篇
  国内免费   5篇
测绘学   6篇
大气科学   35篇
地球物理   16篇
地质学   37篇
海洋学   2篇
天文学   6篇
自然地理   1篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   9篇
  2013年   15篇
  2012年   12篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
2.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
基于热模拟实验的富有机质泥页岩成岩作用及演化特征   总被引:1,自引:0,他引:1  
富有机质泥页岩蕴含丰富的油气资源,但成岩研究基础薄弱,已成为制约页岩油气勘探开发进程的重要因素。通过开展成岩热模拟实验,结合扫描电镜观察、流体成分测试及有机酸测试等实验测试手段,全面描述实验过程中所发生的水-岩化学反应,试图揭示泥页岩成岩过程及成岩演化规律。研究结果显示,有机质热演化过程中存在一个较宽的有机酸生成窗口,对孔隙流体性质具有重要影响;长石和方解石存在接力溶蚀现象,长石溶蚀高峰过后紧接着出现方解石溶蚀高峰,但方解石溶蚀窗较窄,此后出现方解石重新沉淀结晶;黏土矿物转化及长石的溶蚀过程中会产生大量自生微晶石英,成链状或簇状胶结泥页岩骨架。泥页岩地层作为一个相对封闭体系,各类成岩作用之间相互关联,相互影响,构成错综复杂的成岩体系,进一步增加其成岩作用研究难度。  相似文献   
4.
The variability of the East Asian summer monsoon (EASM) is studied using a partially coupled climate model (PCCM) in which the ocean component is driven by observed monthly mean wind stress anomalies added to the monthly mean wind stress climatology from a fully coupled control run. The thermodynamic coupling between the atmospheric and oceanic components is the same as in the fully coupled model and, in particular, sea surface temperature (SST) is a fully prognostic variable. The results show that the PCCM simulates the observed SST variability remarkably well in the tropical and North Pacific and Indian Oceans. Analysis of the rainfall-SST and rainfall-SST tendency correlation shows that the PCCM exhibits local air-sea coupling as in the fully coupled model and closer to what is seen in observations than is found in an atmospheric model driven by observed SST. An ensemble of experiments using the PCCM is analysed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The PCCM simulates the spatial pattern of the first two modes seen in the ERA40 reanalysis as well as part of the variability of the first principal component (correlation up to 0.5 for the model ensemble mean). Different from previous studies, the link between the first principal component and ENSO in the previous winter is found to be robust for the ensemble mean throughout the whole period of 1958–2001. Individual ensemble members nevertheless show the breakdown in the relationship before the 1980’s as seen in the observations.  相似文献   
5.
Simulated response to inter-annual SST variations in the Gulf Stream region   总被引:1,自引:1,他引:0  
Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (~1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.  相似文献   
6.
As a result of climate change and unsustainable land use management in the recent past, droughts have become one of the most devastating climatic hazards whose impacts may prolong from months to years. This study presents analysis of droughts for two major cropping seasons, i.e., Kharif (May–September) and Rabi (October–April), over the Potwar Plateau of Pakistan. The analysis is performed using various datasets viz. observational, reanalysis, and Regional Climate Models (RCMs), for the past (1981–2010) and future (2011–2100) time periods. The following two methods for the identification of dry and wet years, also referred to as drought and wetness, are applied: (1) the percentile rank approach and (2) the drought indices, Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). Future projections of droughts are investigated using RCM (RegCM4.4 and RCA4) outputs from CORDEX South Asia domain under two Representative Concentration Pathway (RCP) scenarios, RCP4.5 and RCP8.5. Generally, the indices show non-significant decreasing trends of drought severity in the recent past for all cases; however, significant increasing trends are observed for annual (0.006) and Kharif (0.007) cases under RCP4.5 scenario. The analysis of large-scale atmospheric dynamics suggests the significant role of low-level geopotential height anomalies over Tibetan Plateau (northwest of Pakistan) during Kharif (Rabi) season in controlling drought occurrence by transporting moisture from the Bay of Bengal (Arabian Sea). Moreover, composites of vertically integrated moisture transport, moisture flux convergence/divergence, and precipitable water anomalies show their marked contribution in maintaining the drought/wetness conditions over the Potwar region.  相似文献   
7.
Extreme events have gained considerable scientific attention recently due to their potentially catastrophic impacts. Heat waves are thought to be more pronounced now in most parts of the world, and especially in South Asia, but doubts remain. The aim of this study is to calculate the frequency and intensity of heat waves in South Asia, focusing on Pakistan and identifying the regions within Pakistan that are most vulnerable to heat waves. Analyses have been performed both at provincial and country levels from 1961 to 2009. The provincial level analysis shows positive trends for heat waves of magnitudes ≥40°C and ≥45°C for 5 and 7 consecutive days. Events of magnitude ≥40°C and ≥45°C for 10 consecutive days also increased in frequency in Punjab, Sindh, and Balochistan. These regions are therefore considered to be the regions most vulnerable to heat wave events in Pakistan. The Balochistan region shows a consistently increasing trend throughout the study period, which may lead to more frequent drought in the future. The country level analysis indicates an increase in the frequency of 5 and 7 consecutive days heat waves at all defined temperature thresholds. The 10-days heat waves spells show a slight increase at ≥40°C and no significant change at ≥45°C. The Gilgit Baltistan and Azad Jammu & Kashmir areas reported no events at ≥45°C for 5, 7 and 10 continuous days. It is anticipated that with a long term rise in temperatures around the globe, heat waves will become more frequent and intense in all parts of the world, including Pakistan.  相似文献   
8.
A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100?years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000?years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world.  相似文献   
9.
10.
The El Niño-Southern Oscillation (ENSO) is investigated in a multicentury integration conducted with the coupled general circulation model (CGCM) ECHAM3/LSG. The quasiperiodic interannual oscillations of the simulated equatorial Pacific climate system are due to subsurface temperature anomaly propagation and a positive atmosphere-ocean feedback. The gravest internal wave modes contribute to the generation of these anomalies. The simulated ENSO has a characteristic period of 5–8 years. Due to the coarse resolution of the ocean model the ENSO amplitude is underestimated by a factor of three as compared to observations. The model ENSO is associated with the typical atmospheric teleconnection patterns. Using wavelet statistics two characteristic interdecadal modulations of the ENSO variance are identified. The origins of a 22 and 35?y ENSO modulation as well as the characteristic ENSO response to greenhouse warming simulated by our model are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号