首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   3篇
地质学   7篇
综合类   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2008年   2篇
  2007年   1篇
  2000年   1篇
排序方式: 共有11条查询结果,搜索用时 203 毫秒
1.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
2.
3.
Situated in the southwest of the Central Asian Orogenic Belt (CAOB), the South Tian Shan (STS) Block is a key area for understanding the final accretion of the CAOB. A suite of volcanic rocks interbedded with continental sediments from the Xiaotikanlike Formation lies along the southwestern edge of the Tian Shan orogen. Laser-ablation-inductively coupled plasma-mass spectrometer U–Pb dating provided a crystallization age of 295.0 ± 2.8 Ma (MSWD = 1.3), suggesting an Early Permian magmatic event. The volcanic rocks show a variable composition, with dominant rhyolites and dacites, subordinate basaltic andesites and few basalts. The felsic rocks are enriched in K and exhibit remarkably negative anomalies in Ba, Sr, Eu, P and Ti. These anomalies associated with their high negative ε Nd(t) values and old Nd model ages suggest that they are most likely sourced from ancient lower crustal rocks. The mafic rocks are characterized by high Mg#, Cr, Ni contents, negative Nb, Ta anomalies and pronounced enrichment in light rare earth elements as well as mild enrichment in large-ion lithophile elements. The mafic rocks are thus inferred to derive from enriched subcontinental lithospheric mantle. The petrographic and geochemical characteristics of the Xiaotikanlike Formation volcanic rocks indicate that they were generated under a post-collisional regime. Therefore, the final collision between the Tarim Craton and the Kazakhstan–Yili terrane took place before Early Permian, most probably at Late Carboniferous. Differing from other tectonic units of the CAOB, the recycling of ancient lithospheric crust played a significant role in the continental growth of the STS Block.  相似文献   
4.
This paper presents the calibration of Omori's aftershock occurrence rate model for Turkey and the resulting likelihoods. Aftershock occurrence rate models are used for estimating the probability of an aftershock that exceeds a specific magnitude threshold within a time interval after the mainshock. Critical decisions on the post-earthquake safety of structures directly depend on the aftershock hazard estimated using the occurrence model. It is customary to calibrate models in a region-specific manner. These models depend on rate parameters(a, b, c and p) related to the seismicity characteristics of the investigated region. In this study, the available well-recorded aftershock sequences for a set of Mw ≥ 5.9 mainshock events that were observed in Turkey until 2012 are considered to develop the aftershock occurrence model. Mean estimates of the model parameters identified for Turkey are a =-1.90, b = 1.11, c = 0.05 and p = 1.20. Based on the developed model, aftershock likelihoods are computed for a range of different time intervals and mainshock magnitudes. Also, the sensitivity of aftershock probabilities to the model parameters is investigated. Aftershock occurrence probabilities estimated using the model are expected to be useful for post-earthquake safety evaluations in Turkey.  相似文献   
5.
楚雄盆地是滇黔桂地区面积最大的含油气盆地,油气勘探进展缓慢,关键问题是基底和沉积盖层展布不清。重磁电是认识和了解盆地基底展布的重要手段。本研究在楚雄盆地西部实施2条区域重磁电测线,并对其进行基底结构的综合解译。结果表明:楚雄盆地西部上三叠统底界的最大埋藏深度为7 km,盆地总体走向北西,结晶基底在平川、云南驿、红河断裂以东,猛虎、舍资一线以西地区深度最大为9 km;在大姚县和南华县之间形成楚雄盆地最大的磁基底凹陷区,面积达到1 200 km2。  相似文献   
6.
For the activities of the mining industry land, equipment, material, and energy are used. During operation material and energy flows such as overburden, dead rock, tailings, wastewater, exhaust air, dust, energy, abrasion, coolant and lubricant losses, are released. These released material and energy flows are nearly always without value for the raw material supply chain as they are not production targets. Instead, they have negative effects on the economy and ecology and are, therefore, referred to as ‘non-intended’. The knowledge of the quantities and qualities of these non-intended outputs as a function of the processes and their parameters is the basis for technical and economical measures. A methodology for the acquisition and assessment of the material and energy flows in the mining industry was developed and tested at the Technical University Berlin, Germany. For that purpose and based on a system analysis in different mines, all relevant material and energy flows were assigned to individual processes. Causal relationships, possible interactions, quantities, and qualities were examined as functions of system parameters. Finally, a technical and economic evaluation was performed.  相似文献   
7.
随着城市化的发展,伴随而来的空气质量问题已成为众多环境问题中被广泛讨论与关注的话题。为深入了解空气质量形成机理、探讨空气污染因子的分布特征,以2015年全国监测站点空气质量数据为基础,提取京津冀地区空气质量数据,从时间、空间、时空变化3个角度出发,研究NO2、SO2、PM2.5、CO、O3、PM10六种空气污染因子以及空气质量指数(AQI)的时空分布特征,并分析各个污染因子之间以及与AQI的相关性。分析结果表明:京津冀地区空气质量时空分布特征差异较大,北部地区AQI明显低于南部地区,夏秋两季空气质量普遍好于春冬两季;AQI与NO2、PM2.5、CO呈明显正相关,与O3呈不明显的负相关,O3与AQI相关性较小。分析结果可为京津冀地区空气质量的防控与预测提供理论基础。  相似文献   
8.
The Late Jurassic-early Senonian Cehennemdere Formation extending in an E-W direction in a wide area at the south of the Bolkar Mountains (Central Taurides, Turkey) is composed of platform carbonates. The formation was deposited in an environment that was being transformed from a shallow carbonate platform to an open shelf and a continental slope, and was buried until late Paleocene uplift. The formation, with a thickness of about 360 m, was chiefly developed as textures consisting of mudstone and wackestone and has been commonly dolomitized. Based on petrographic and geochemical properties, four types of replacement dolomites and two types of dolomite cements were distinguished. Replacement dolomite (RD), which is cut by low-amplitude stylolites developed as (1) fine crystalline planar-s dolomite (RD1); (2) medium crystalline planar-s dolomite (RD2); (3) medium-coarse crystalline planar-e dolomite (RD3) and; (4) coarse crystalline planar-s (e) dolomite (RD4). Two types of dolomite cements (CD) observed in low abundance and overlie low-amplitude stylolites: (1) coarse crystalline dolomite cement (CD1) filling dissolution voids and fractures in RD1 dolomites, and; (2) rim dolomite cement (CD2) that commonly develops on the space-facing surfaces of RD4 dolomite. Replacement dolomites are non-stoichiometric (Ca54–59Mg41–46), have similar geochemical properties, and are generally dull red/non luminescent in appearance. Replacement dolomite is represented by δ18O values from −4.5 to −0.5‰ VPDB, δ13C values of −0.7 to 2.7‰ VPDB, and 87Sr/86Sr ratios ranging from 0.707178 to 0.707692. Petrographic and geochemical data indicate that replacement dolomite (particularly RD2, RD3, and RD4 dolomite) was formed at shallow-intermediate burial depths during the Late Jurassic-Early Cretaceous, from seawater and/or from slightly modified seawater. The replacement dolomite (RD) was then recrystallized at increased burial depths and temperatures. Dolomite cements are similar to replacement dolomites in that they are non-stoichiometric (Ca55Mg45) and have similar trace element compositions. CD1 dolomite, which cuts low-amplitude stylolites, was formed during intermediate to deep burial following stylolite development. CD2 dolomite was precipitated in intercrystal pores in association with RD4 dolomite. Remaining pore space was filled with bitumen.  相似文献   
9.
塔里木盆地西北缘NW走向的印干断层为逆冲断层,断层带指向构造证据表明印干断层的逆冲方向为NE向,与柯坪冲断系SE向推覆明显不同.地层学、断层切割关系等证据显示印于断层形成早于更新世活动的柯坪冲断系,活动期主要在上新世至早更新世.研究结果表明,柯坪塔格地区晚新生代发育两期方向不同的逆冲推覆构造,印干断层是上新世帕米尔构造结前陆冲断带的前缘冲断层,而柯坪冲断系是更新世以来南天山向塔里木盆地方向的前陆冲断带.  相似文献   
10.
Recent experimental determinations of the solubility products of common rare earth minerals such as monazite and xenotime and stability constants for chloride, sulfate, carbonate and hydroxide complexes provide a basis to model quantitatively the solubility, and therefore the mobility, of rare earth elements (REE) at near surface conditions. Data on the mobility of REE and stabilities of REE complexes at near-neutral conditions are of importance to safe nuclear waste disposal, and environmental monitoring. The aim of this study is to understand REE speciation and solubility of a given REE in natural environments. In this study, a series of formation constants for La aqueous complexes are recommended by using the specific interaction theory (SIT) for extrapolation to infinite dilution. Then, a thermodynamic model has been employed for calculation of the solubility and speciation of La in soil solutions reacted with the La end-member of mineral monazite (LaPO4), and other La-bearing solid phases including amorphous lanthanum hydroxide (La(OH)3, am) and different La carbonates, as a function of various inorganic and organic ligand concentrations. Calculations were carried out at near-neutral pH (pH 5.5–8.5) and 25 °C at atmospheric CO2 partial pressure. The model takes account of the species: La3+, LaCl2+, , , , , , , , , La(OH)2+, LaOx+, , LaAc2+ and (where Ox2− = oxalate and Ac = acetate).The calculations indicate that the La species that dominate at pH 5.5–8.5 in the baseline model soil solution (BMSS) include La3+, LaOx+, , and in order of increasing importance as pH rises. The solubility of monazite in the BMSS remains less than 3 × 10−9 M, exhibiting a minimum of 2 × 10−12 M at pH 7.5. The calculations quantitatively demonstrate that the concentrations of La controlled by the solubility of other La-bearing solid phases are many orders of magnitude higher than those controlled by monazite in the pH range from 5.5 to 8.5, suggesting that monazite is likely to be the solubility-controlling phase at this pH range. The calculations also suggest that significant mobility of La (and other REE) is unlikely because high water–rock ratios on the order of at least 104 (mass ratio) are required to move 50% of the La from a soil. An increase in concentration of oxalate by one order of magnitude from that of the baseline model solution results in the dominance of LaOx+ at pH 5.5–7.5. Similarly, the increase in concentration of by one order of magnitude makes the dominant species at pH 5.5–7.5. Above pH 7.5, carbonate complexes are important. The increase in oxalate or concentrations by one order of magnitude can enhance the solubility of monazite by a factor of up to about 6 below neutral pH, in comparison with that in the baseline model soil solution. From pH 7.0 to 8.5, the solubility of monazite in the soil solutions with higher concentrations of oxalate or is similar, or almost identical, to that in the BMSS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号