首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
大气科学   3篇
地球物理   1篇
地质学   59篇
海洋学   2篇
天文学   1篇
自然地理   17篇
  2020年   1篇
  2013年   3篇
  2011年   2篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   1篇
  2006年   9篇
  2005年   5篇
  2003年   3篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
排序方式: 共有83条查询结果,搜索用时 234 毫秒
1.
Morphological, seismic and lithostratigraphic investigations of a moraine deposit at Bleik (the Bleik moraine), northern Andøya, show short-distance transported till overlying long-distance transported predominantly glaciofluvial ice-marginal deposits. Consolidated glaciomarine sediments from a core at present sea-level, c . 400 m distally to the moraine complex, contain 31 species of foraminifera, among which Cassidulina reniforme, Islandiella helenae and Trifarina fluens dominate, and fragments of the molluscs Mya truncata and Astarte sp. and the echinoid Strongylocentrotus sp. Amino acid analyses of the foraminifera Cibicides lobatulus and the mollusc Mya truncata indicate ages between 22,000 and 16,000 BP. Radiocarbon dating of fragments of Mya truncata from the upper part of the core gave an age of 17,940 ± 245 BP, while a dating of unidentified shell fragments from the lower part gave an infinite age (>40,000 BP). The sediment was probably disturbed by icebergs beyond the end moraine zone, and the radiocarbon and amino acid dating of Mya truncata therefore represent a maximum age for this process. This new evidence indicates two phases with a higher relative sea-level than at present at Bleik, c . 18,000 and >40,000 BP. The Bleik moraine probably represents the early Late Weichselian glacial maximum ( c . 22,000 BP), while the underlying deglaciation deposit and associated beach-ridge (Bruvollen) is of pre-Late Weichselian age. Moraine ridges 3–4 km to the south of Bleik probably indicate advances of local glaciers between 22,000 and 18,000 BP.  相似文献   
2.
The Billefjorden Fault Zone represents a major lineament on Spitsbergen with a history of tectonic activity going back into the Devonian and possibly earlier. Recent structural, sedimcntological and stratigraphical investigations indicate that most of the stratigraphic thickness variations within the Mesozoic strata along the Billefjorden Fault Zone south of Isfjordcn are due to Tertiary compressional tectonics related to the transpressive Eocene West-Spitsbergen Orogeny. No convincing evidence of distinct Mesozoic extensional events, as suggested by previous workers, has been recognized. Tertiary compressional tectonics are characterized by a combined thin-skinned/thick-skinned structural style. Decollement zones arc recognized in the Triassic Sassendalen Group (tower Décollement Zone) and in the Jurassic/Cretaceous Janusfjellet Subgroup (Upper Décollement Zone). East-vergent folding and reverse faulting associated with these decollement' zones have resulted in the development of compressional structures, of which the major arc the Skolten and Tronfjellct Anticlines and the Advcntelva Duplex. Movements on one or more high angle east-dipping reverse faults in the pre-Mesozoic basement have resulted in the development of the Juvdalskampcn Monocline, and are responsible for out-of-sequence thrusting and thinning of the Mesozoic sequence across the Billefjorden Fault Zone. Preliminary shortening calculations indicate an eastward displacement of minimum 3-4 km, possibly as much as 10 km for the Lower Cretaceous and younger rocks across the Billefjorden Fault Zone.  相似文献   
3.
4.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   
5.
6.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   
7.
A study of the Middle Jurassic Rannoch Formation in the Gullfaks Field shows that there is no relationship between the content and distribution of kaolinite and location relative to the late Cimmerian unconformity. From petrographic data most of the kaolinite is interpreted to be detrital, and only traces of authigenic kaolinite are observed. Mass-balance calculations are used to provide guidelines as to the likelihood of kaolinite being formed and preserved in sandstones under the unconformity. The result of the calculations shows that the propagation rate of the dissolution front in the sandstones was probably on average slower than the erosion rates during the formation of the late Cimmerian unconformity. Hence, transformation of significant amounts of feldspar and mica to kaolinite probably did not take place within the sandstones which at present underlie the unconformity in the Gullfaks Field. Periods of exposure during formation of unconformities may thus be less effective causes of kaolinitization in sandstones than has been assumed.  相似文献   
8.
9.
KÖgler, F.-C. & Larsen, B. 1979 03 01: The West Bornholm basin in the Baltic Sea: geological structure and Quaternary sediments. Boreas . Vol. 8, pp. 1–22. Oslo. ISSN 0300–9483.
The West Bornholm basin is an approx. 1000 km2 subbasin of the Bornholm basin just north of Bornholm. The basin has been mapped by acoustic profiling and sampling of the sea floor. The basin is eroded down into Mesozoic sediments which are downfaulted between basement horsts in the Fennoscandian Border Zone. The development of the Quaternary morphology is illustrated by maps of the surface of the bedrock, the glacial landscape beneath the varved clays, the recent topography combined with isopach maps of late Glacial and Holocene formations. Quaternary formations are defined and described. The brown, very fine grained varved clay is deposited as a conformable cover on the substratum. It is probably deposited from suspensions carried in the whole water body, while turbidity currents were of minor importance. The recent sedimentary environment is an example of a restricted, but not totally anoxic basin. The recent sediment is chiefly mud rich in organic matter (ca. 4% Corg). According to a rough estimate, the long-term mean sedimentation rate of organic carbon is 6 g/m2/year.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号